forked from i--storm/rc-leonardo-joy
-
Notifications
You must be signed in to change notification settings - Fork 5
/
Leonardo-USB-RC-Adapter.ino
193 lines (160 loc) · 5.35 KB
/
Leonardo-USB-RC-Adapter.ino
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
/**************************************************************************************************
This sketch turns Arduino Leonardo (or Pro Micro) into a USB adapter for RC transmitter.
The adapter can be used to play FPV Freerider (http://fpv-freerider.itch.io/fpv-freerider)
or other flight simulators.
Prerequisite:
Put "hid.cpp" and "usbapi.h" from ArduinoLibs folder into Arduino installation folder before compiling:
<Arduino_Installation_Folder>\hardware\arduino\cores\arduino\
Connections:
- RC PPM out <--> Digital Pin 4 of Arduino Leonardo
- RC GND <--> Arduino GND
Based on https://github.com/i--storm/rc-leonardo-joy , but enhanced as follows:
- improved sticks resolution (from 255 to 1000),
- improved reading of ppm intervals (using timer input capture interrupt instead of micros() func)
- cleaned up code
Done by Andrey Voroshkov in December 2015,
- github: https://github.com/voroshkov
- youtube: https://www.youtube.com/user/voroshkov
- facebook: https://www.facebook.com/andrey.voroshkov
- blogspot: http://voroshkov.blogspot.com
**************************************************************************************************/
#include "Arduino.h"
#include <avr/interrupt.h>
// Use for Futaba transmitters (they have shifted center value and narrower range by default)
#define FUTABA
// Use to enable output of PPM values to serial
// #define SERIALOUT
#define RC_CHANNELS_COUNT 6
#ifdef FUTABA
#define STICK_HALFWAY 450
#define STICK_CENTER 1530
#define THRESHOLD 200
#else
#define STICK_HALFWAY 500
#define STICK_CENTER 1500
#define THRESHOLD 100 // threshold is used to detect PPM values (added to range at both ends)
#endif
#define USB_STICK_VALUE_MAX 1000
#define MIN_PULSE_WIDTH (STICK_CENTER - STICK_HALFWAY)
#define MAX_PULSE_WIDTH (STICK_CENTER + STICK_HALFWAY)
#define NEWFRAME_PULSE_WIDTH 3000
// timer capture ICP1 pin corresponds to Leonardo digital pin 4
#define PPM_CAPTURE_PIN 4
#define LED_PIN 13
// for timer prescaler set to 1/8 of 16MHz, counter values should be
// divided by 2 to get the number of microseconds
#define TIMER_COUNT_DIVIDER 2
// this array contains the lengths of read PPM pulses in microseconds
volatile uint16_t rcValue[RC_CHANNELS_COUNT];
// enum defines the order of channels
enum {
ROLL,
PITCH,
THROTTLE,
YAW,
AUX1,
AUX2
};
void setup() {
setupPins();
initTimer();
Joystick.begin(false);
#ifdef SERIALOUT
Serial.begin(115000);
#endif
}
void loop(){
setControllerDataJoystick();
Joystick.sendState();
#ifdef SERIALOUT
Serial.print(rcValue[YAW]);
Serial.print("\t");
Serial.print(rcValue[THROTTLE]);
Serial.print("\t");
Serial.print(rcValue[ROLL]);
Serial.print("\t");
Serial.print(rcValue[PITCH]);
Serial.print("\t");
Serial.print(rcValue[AUX1]);
Serial.print("\t");
Serial.print(rcValue[AUX2]);
Serial.println("\t");
#endif
}
void initTimer(void) {
// Input Capture setup
// ICNC1: =0 Disable Input Capture Noise Canceler to prevent delay in reading
// ICES1: =1 for trigger on rising edge
// CS11: =1 set prescaler to 1/8 system clock (F_CPU)
TCCR1A = 0;
TCCR1B = (0<<ICNC1) | (1<<ICES1) | (1<<CS11);
TCCR1C = 0;
// Interrupt setup
// ICIE1: Input capture
TIFR1 = (1<<ICF1); // clear pending
TIMSK1 = (1<<ICIE1); // and enable
}
void setupPins(void){
// Set up the Input Capture pin
pinMode(PPM_CAPTURE_PIN, INPUT);
digitalWrite(PPM_CAPTURE_PIN, 1); // enable the pullup
pinMode(LED_PIN, OUTPUT);
}
// set joystick data in HID descriptor
void setControllerDataJoystick(){
Joystick.setXAxis(stickValue(rcValue[YAW]));
Joystick.setYAxis(stickValue(rcValue[THROTTLE]));
Joystick.setXAxisRotation(stickValue(rcValue[ROLL]));
Joystick.setYAxisRotation(stickValue(rcValue[PITCH]));
Joystick.setButton(0, rcValue[AUX1] > STICK_CENTER);
Joystick.setButton(1, rcValue[AUX2] > STICK_CENTER);
}
// Convert a value in the range of [Min Pulse - Max Pulse] to [0 - USB_STICK_VALUE_MAX]
uint16_t stickValue(uint16_t rcVal) {
return constrain(
map(rcVal - MIN_PULSE_WIDTH,
0, MAX_PULSE_WIDTH - MIN_PULSE_WIDTH,
0, USB_STICK_VALUE_MAX
),
0, USB_STICK_VALUE_MAX
);
}
uint16_t adjust(uint16_t diff, uint8_t chan) {
// Here you can trim your rc values (e.g. if TX has no trims).
// switch (chan) {
// case THROTTLE: return diff + 50;
// case YAW: return diff + 60;
// case PITCH: return diff + 60;
// case ROLL: return diff + 90;
// case AUX1: return diff + 10;
// }
//convert to microseconds (because of timer prescaler usage)
return diff / TIMER_COUNT_DIVIDER;
}
ISR(TIMER1_CAPT_vect) {
union twoBytes {
uint16_t word;
uint8_t byte[2];
} timeValue;
uint16_t now, diff;
static uint16_t last = 0;
static uint8_t chan = 0;
timeValue.byte[0] = ICR1L; // grab captured timer value (low byte)
timeValue.byte[1] = ICR1H; // grab captured timer value (high byte)
now = timeValue.word;
diff = now - last;
last = now;
//all numbers are microseconds multiplied by TIMER_COUNT_DIVIDER (as prescaler is set to 1/8 of 16 MHz)
if(diff > (NEWFRAME_PULSE_WIDTH * TIMER_COUNT_DIVIDER)) {
chan = 0; // new data frame detected, start again
}
else {
if(diff > (MIN_PULSE_WIDTH * TIMER_COUNT_DIVIDER - THRESHOLD)
&& diff < (MAX_PULSE_WIDTH * TIMER_COUNT_DIVIDER + THRESHOLD)
&& chan < RC_CHANNELS_COUNT)
{
rcValue[chan] = adjust(diff, chan); //store detected value
}
chan++; //no value detected within expected range, move to next channel
}
}