-
Notifications
You must be signed in to change notification settings - Fork 52
/
Copy pathpyspark_test.py
461 lines (405 loc) · 18.6 KB
/
pyspark_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
from pyspark import SparkContext, SparkConf
import json
from pyspark.streaming import StreamingContext
import tensorflow as tf
from nltk.tokenize import TweetTokenizer
import data_helpers
from nltk.tokenize.punkt import PunktSentenceTokenizer
import gensim
import numpy as np
sc = SparkContext(appName="HBaseInputFormat")
sc.addPyFile("/home/sahil/Desktop/Relation_Extraction/data_helpers.py")
ssc = StreamingContext(sc, 1)
# Eval Parameters
tf.flags.DEFINE_string("checkpoint_dir", "data/1485336002/checkpoints", "Checkpoint directory from training run")
tf.flags.DEFINE_boolean("eval_train", False, "Evaluate on all training data")
tf.flags.DEFINE_integer("distance_dim", 5, "Dimension of position vector")
tf.flags.DEFINE_integer("embedding_size", 50, "Dimension of word embedding")
tf.flags.DEFINE_integer("n1", 200, "Hidden layer1")
tf.flags.DEFINE_integer("n2", 100, "Hidden layer2")
tf.flags.DEFINE_integer("batch_size", 64, "Batch Size (default: 64)")
tf.flags.DEFINE_float("lr", 0.0001, "Learning rate")
tf.flags.DEFINE_boolean("allow_soft_placement", True, "Allow device soft device placement")
tf.flags.DEFINE_boolean("log_device_placement", False, "Log placement of ops on devices")
tf.flags.DEFINE_string("filter_sizes", "3,4,5", "Comma-separated filter sizes (default: '3,4,5')")
tf.flags.DEFINE_integer("num_filters", 128, "Number of filters per filter size (default: 128)")
tf.flags.DEFINE_float("dropout_keep_prob", 0.4, "Dropout keep probability (default: 0.5)")
tf.flags.DEFINE_integer("num_epochs", 1000, "Number of training epochs (default: 200)")
tf.flags.DEFINE_integer("checkpoint_every", 100, "Save model after this many steps (default: 100)")
tf.flags.DEFINE_float("l2_reg_lambda", 0.0, "L2 regularizaion lambda (default: 0.0)")
tf.flags.DEFINE_integer("evaluate_every", 100, "Evaluate model on dev set after this many steps (default: 100)")
tf.flags.DEFINE_integer("window_size", 3, "n-gram")
tf.flags.DEFINE_integer("sequence_length", 204, "max tokens b/w entities")
tf.flags.DEFINE_integer("K", 4, "K-fold cross validation")
tf.flags.DEFINE_float("early_threshold", 0.5, "Threshold to stop the training")
FLAGS = tf.flags.FLAGS
FLAGS._parse_flags()
tokenizer = TweetTokenizer()
invalid_word = "UNK"
checkpoint_file = tf.train.latest_checkpoint(FLAGS.checkpoint_dir)
model = gensim.models.Word2Vec.load("~/Desktop/Relation_Extraction/model")
def word2vec(word):
return model[word]
def get_legit_word(str, flag):
if flag == 0:
for word in reversed(str):
if word in [".", "!"]:
return invalid_word
if data_helpers.is_word(word):
return word
return invalid_word
if flag == 1:
for word in str:
if word in [".", "!"]:
return invalid_word
if data_helpers.is_word(word):
return word
return invalid_word
def get_sentences(text):
indices = []
for start, end in PunktSentenceTokenizer().span_tokenize(text):
indices.append((start, end))
return indices
def get_tokens(words):
valid_words = []
for word in words:
if data_helpers.is_word(word) and word in model.vocab:
valid_words.append(word)
return valid_words
def get_left_word(message, start):
i = start - 1
is_space = 0
str = ""
while i > -1:
if message[i].isspace() and is_space == 1 and str.strip():
break
if message[i].isspace() and is_space == 1 and not data_helpers.is_word(str):
is_space = 0
if message[i].isspace():
is_space = 1
str += message[i]
i -= 1
str = str[::-1]
return tokenizer.tokenize(str)
def get_right_word(message, start):
i = start
is_space = 0
str = ""
while i < len(message):
if message[i].isspace() and is_space == 1 and str.strip():
break
if message[i].isspace() and is_space == 1 and not data_helpers.is_word(str):
is_space = 0
if message[i].isspace():
is_space = 1
str += message[i]
i += 1
return tokenizer.tokenize(str)
np.random.seed(42)
pivot = 2 * FLAGS.sequence_length + 1
pos_vec = np.random.uniform(-1, 1, (pivot + 1, FLAGS.distance_dim))
# pos_vec_entities = np.random.uniform(-1, 1, (4, FLAGS.distance_dim))
# beginning and end of sentence embeddings
beg_emb = np.random.uniform(-1, 1, FLAGS.embedding_size)
end_emb = np.random.uniform(-1, 1, FLAGS.embedding_size)
extra_emb = np.random.uniform(-1, 1, FLAGS.embedding_size)
def generate_vector(message, start1, end1, start2, end2):
sent = get_sentences(message)
beg = -1
for l, r in sent:
if (start1 >= l and start1 <= r) or (end1 >= l and end1 <= r) or (start2 >= l and start2 <= r) or (
end2 >= l and end2 <= r):
if beg == -1:
beg = l
fin = r
print(message[beg:fin])
entity1, entity2 = message[start1:end1], message[start2:end2]
l1 = [get_legit_word([word], 1) for word in tokenizer.tokenize(entity1)]
l2 = [get_legit_word([word], 1) for word in tokenizer.tokenize(entity2)]
# TODO add PCA for phrases
temp = np.zeros(FLAGS.embedding_size)
valid_words = 0
print(entity1)
print(l1)
for word in l1:
if word != "UNK" and data_helpers.is_word(word) and word in model.vocab:
valid_words += 1
temp = np.add(temp, word2vec(word))
if valid_words == 0:
return None
l1 = temp / float(valid_words)
temp = np.zeros(FLAGS.embedding_size)
valid_words = 0
print(entity2)
print(l2)
for word in l2:
if word != "UNK" and data_helpers.is_word(word) and word in model.vocab:
valid_words += 1
temp = np.add(temp, word2vec(word))
if valid_words == 0:
return None
lword1 = lword2 = rword1 = rword2 = np.zeros(50)
l2 = temp / float(valid_words)
if get_legit_word(get_left_word(message, start1), 0) in model.vocab:
lword1 = word2vec(get_legit_word(get_left_word(message, start1), 0))
if get_legit_word(get_left_word(message, start2), 0) in model.vocab:
lword2 = word2vec(get_legit_word(get_left_word(message, start2), 0))
if get_legit_word(get_right_word(message, end1), 1) in model.vocab:
rword1 = word2vec(get_legit_word(get_right_word(message, end1), 1))
if get_legit_word(get_right_word(message, end2), 1) in model.vocab:
rword2 = word2vec(get_legit_word(get_right_word(message, end2), 1))
# l3 = np.divide(np.add(lword1, rword1), 2.0)
# l4 = np.divide(np.add(lword2, rword2), 2.0)
print(get_legit_word(get_left_word(message, start1), 0),
get_legit_word(get_left_word(message, start2), 0))
print(get_legit_word(get_right_word(message, end1), 1),
get_legit_word(get_right_word(message, end2), 1))
# tokens in between
l_tokens = []
r_tokens = []
if beg != -1:
l_tokens = get_tokens(tokenizer.tokenize(message[beg:start1]))
if fin != -1:
r_tokens = get_tokens(tokenizer.tokenize(message[end2:fin]))
in_tokens = get_tokens(tokenizer.tokenize(message[end1:start2]))
print(l_tokens, in_tokens, r_tokens)
tot_tokens = len(l_tokens) + len(in_tokens) + len(r_tokens) + 2
while tot_tokens < FLAGS.sequence_length:
r_tokens.append("UNK")
tot_tokens += 1
# left tokens
l_matrix = []
l_len = len(l_tokens)
r_len = len(r_tokens)
m_len = len(in_tokens)
for idx, token in enumerate(l_tokens):
word_vec, pv1, pv2 = word2vec(token), pos_vec[pivot + (idx - l_len)], pos_vec[
pivot + (idx - l_len - 1 - m_len)]
l_matrix.append([word_vec, pv1, pv2])
# middle tokens
in_matrix = []
for idx, token in enumerate(in_tokens):
word_vec, pv1, pv2 = word2vec(token), pos_vec[idx + 1], pos_vec[idx - m_len]
in_matrix.append([word_vec, pv1, pv2])
# right tokens
r_matrix = []
for idx, token in enumerate(r_tokens):
if token == "UNK":
word_vec, pv1, pv2 = extra_emb, pos_vec[idx + m_len + 2], pos_vec[idx + 1]
r_matrix.append([word_vec, pv1, pv2])
else:
word_vec, pv1, pv2 = word2vec(token), pos_vec[idx + m_len + 2], pos_vec[idx + 1]
r_matrix.append([word_vec, pv1, pv2])
tri_gram = []
llen = len(l_matrix)
mlen = len(in_matrix)
rlen = len(r_matrix)
dist = llen + 1
if llen > 0:
if llen > 1:
tri_gram.append(
np.hstack((beg_emb, l_matrix[0][0], l_matrix[1][0], l_matrix[0][1], l_matrix[0][2])))
for i in range(1, len(l_matrix) - 1):
tri_gram.append(
np.hstack((l_matrix[i - 1][0], l_matrix[i][0], l_matrix[i + 1][0], l_matrix[i][1],
l_matrix[i][2])))
tri_gram.append(np.hstack((l_matrix[llen - 2][0], l_matrix[llen - 1][0], l1, l_matrix[llen - 1][1],
l_matrix[llen - 2][2])))
else:
tri_gram.append(
np.hstack((beg_emb, l_matrix[0][0], l1, l_matrix[0][1], l_matrix[0][2])))
if mlen > 0:
tri_gram.append(
np.hstack((l_matrix[llen - 1][0], l1, in_matrix[0][0], pos_vec[0], pos_vec[pivot - dist])))
else:
tri_gram.append(np.hstack((l_matrix[llen - 1][0], l1, l2, pos_vec[0], pos_vec[pivot - dist])))
else:
if mlen > 0:
tri_gram.append(
np.hstack((beg_emb, l1, in_matrix[0][0], pos_vec[0], pos_vec[pivot - dist])))
else:
tri_gram.append(np.hstack((beg_emb, l1, l2, pos_vec[0], pos_vec[pivot - dist])))
if mlen > 0:
if mlen > 1:
tri_gram.append(np.hstack((l1, in_matrix[0][0], in_matrix[1][0], in_matrix[0][1], in_matrix[0][2])))
for i in range(1, len(in_matrix) - 1):
tri_gram.append(np.hstack((in_matrix[i - 1][0], in_matrix[i][0], in_matrix[i + 1][0],
in_matrix[i][1], in_matrix[i][2])))
tri_gram.append(np.hstack((in_matrix[mlen - 2][0], in_matrix[mlen - 1][0], l2,
in_matrix[mlen - 1][1], in_matrix[mlen - 2][2])))
else:
tri_gram.append(np.hstack((l1, in_matrix[0][0], l2, in_matrix[0][1], in_matrix[0][2])))
if rlen > 0:
tri_gram.append(np.hstack((in_matrix[mlen - 1][0], l2, r_matrix[0][0], pos_vec[dist], pos_vec[0])))
else:
tri_gram.append(np.hstack((in_matrix[mlen - 1][0], l2, end_emb, pos_vec[dist], pos_vec[0])))
else:
if rlen > 0:
tri_gram.append(np.hstack((l1, l2, r_matrix[0][0], pos_vec[dist], pos_vec[0])))
else:
tri_gram.append(np.hstack((l1, l2, end_emb, pos_vec[dist], pos_vec[0])))
if rlen > 0:
if rlen > 1:
tri_gram.append(np.hstack((l2, r_matrix[0][0], r_matrix[1][0], r_matrix[0][1], r_matrix[0][2])))
for i in range(1, len(r_matrix) - 1):
tri_gram.append(np.hstack(
(r_matrix[i - 1][0], r_matrix[i][0], r_matrix[i + 1][0], r_matrix[i][1], r_matrix[i][2])))
tri_gram.append(np.hstack((r_matrix[rlen - 2][0], r_matrix[rlen - 1][0], end_emb,
r_matrix[rlen - 1][1], r_matrix[rlen - 2][2])))
else:
tri_gram.append(np.hstack((l2, r_matrix[0][0], end_emb, r_matrix[0][1], r_matrix[0][2])))
# tri_gram.append(np.hstack((l1, in_matrix[0][0], in_matrix[1][0], in_matrix[0][1], in_matrix[0][2])))
#
# for idx in range(1, mlen - 1):
# tri_gram.append(
# np.hstack((in_matrix[idx - 1][0], in_matrix[idx][0], in_matrix[idx + 1][0], in_matrix[idx][1], in_matrix[idx][2])))
# tri_gram.append(
# np.hstack((in_matrix[mlen - 2][0], in_matrix[mlen - 1][0], l2, in_matrix[mlen - 1][1], in_matrix[mlen - 1][2])))
# tri_gram.append(np.hstack((in_matrix[mlen - 1][0], l2, end_emb, pos_vec_entities[2], pos_vec_entities[3])))
print("======================================")
# lf = np.vstack((l1, l2, l3, l4))
print(np.asarray(tri_gram).shape)
return np.asarray(tri_gram)
def get_value(row):
message = row[0]
rowkey = row[1]
start1 = row[2]
end1 = row[3]
start2 = row[4]
end2 = row[5]
if start2 < start1: # swap if entity2 comes first
start1, start2 = start2, start1
end1, end2 = end2, end1
graph = tf.Graph()
with graph.as_default():
session_conf = tf.ConfigProto(
allow_soft_placement=FLAGS.allow_soft_placement,
log_device_placement=FLAGS.log_device_placement)
sess = tf.Session(config=session_conf)
with sess.as_default():
# Load the saved meta graph and restore variables
saver = tf.train.import_meta_graph("{}.meta".format(checkpoint_file))
saver.restore(sess, checkpoint_file)
# Get the placeholders from the graph by name
input_x = graph.get_operation_by_name("X_train").outputs[0]
dropout_keep_prob = graph.get_operation_by_name("dropout_keep_prob").outputs[0]
# Tensors we want to evaluate
predictions = graph.get_operation_by_name("output/predictions").outputs[0]
# Generate batches for one epoch
target = []
predicted = []
host = "localhost"
table = "posts"
conf = {"hbase.zookeeper.quorum": "localhost", "hbase.mapreduce.inputtable": "posts"}
keyConv = "org.apache.spark.examples.pythonconverters.ImmutableBytesWritableToStringConverter"
valueConv = "org.apache.spark.examples.pythonconverters.HBaseResultToStringConverter"
def get_valid_items(items):
message = drug_json = sideEffect_json = rowkey = ""
for item in items:
json_text = json.loads(item)
rowkey = json_text["row"]
if json_text["qualifier"] == "message":
message = json_text["value"]
if json_text["qualifier"] == "drug":
drug_json = json_text["value"]
if json_text["qualifier"] == "sideEffect":
sideEffect_json = json_text["value"]
drug_json_array = json.loads(drug_json)
sideEffect_json_array = json.loads(sideEffect_json)
if message is None or drug_json is None or sideEffect_json is None or drug_json == "null" or sideEffect_json == "null":
return ([(rowkey, message, None, None, None, None)])
if not len(drug_json_array) or not len(sideEffect_json_array):
return ([(rowkey, message, None, None, None, None)])
arr = []
# print(drug_json, sideEffect_json)
for drug_json in drug_json_array:
drug_offset_start = drug_json["startNode"]["offset"]
drug_offset_end = drug_json["endNode"]["offset"]
for sideEffect_json in sideEffect_json_array:
sideEffect_offset_start = sideEffect_json["startNode"]["offset"]
row = rowkey + "-" + str(drug_offset_start) + "-" + str(sideEffect_offset_start)
sideEffect_offset_end = sideEffect_json["endNode"]["offset"]
arr.append(
(row, message, drug_offset_start, drug_offset_end, sideEffect_offset_start, sideEffect_offset_end))
return arr
def filter_rows(row):
if row[0] is None or row[1] is None or row[2] is None or row[3] is None or row[4] is None or row[5] is None:
return False
return True
def save_record(rdd):
keyConv = "org.apache.spark.examples.pythonconverters.StringToImmutableBytesWritableConverter"
valueConv = "org.apache.spark.examples.pythonconverters.StringListToPutConverter"
conf = {"hbase.zookeeper.quorum": "localhost",
"hbase.mapred.outputtable": "drugSegments_test",
"mapreduce.outputformat.class": "org.apache.hadoop.hbase.mapreduce.TableOutputFormat",
"mapreduce.job.output.key.class": "org.apache.hadoop.hbase.io.ImmutableBytesWritable",
"mapreduce.job.output.value.class": "org.apache.hadoop.io.Writable"}
row_rdd = rdd.map(lambda x: x.split("\n"))
row_rdd.foreach(get_valid_items)
datamap = row_rdd.map(
lambda x: (str(json.loads(x)["row"]), [str(json.loads(x)["row"]), "ml_results", "cats_json", "lolva"]))
print(datamap)
datamap.saveAsNewAPIHadoopDataset(conf=conf, keyConverter=keyConv, valueConverter=valueConv)
def get_input(row):
print("here1**********************************////////////////////////")
try:
print(FLAGS.__flags, "====================================================")
FLAGS_temp = FLAGS
except:
pass
rowkey = row[0]
message = row[1]
start1 = row[2]
end1 = row[3]
start2 = row[4]
end2 = row[5]
if start2 < start1: # swap if entity2 comes first
start1, start2 = start2, start1
end1, end2 = end2, end1
print(start1, end1, start2, end2)
# input_vec = generate_vector(message, start1, end1, start2, end2)
# print(input_vec)
# return (rowkey, input_vec)
def display(rdd):
print(rdd)
hbase_rdd = sc.newAPIHadoopRDD(
"org.apache.hadoop.hbase.mapreduce.TableInputFormat",
"org.apache.hadoop.hbase.io.ImmutableBytesWritable",
"org.apache.hadoop.hbase.client.Result",
keyConverter=keyConv,
valueConverter=valueConv,
conf=conf)
hbase_rdd = hbase_rdd.map(lambda x: x[1]).map(
lambda x: x.split("\n")) # message_rdd = hbase_rdd.map(lambda x:x[0]) will give only row-key
data_rdd = hbase_rdd.flatMap(lambda x: get_valid_items(x))
data_rdd = data_rdd.filter(lambda x: filter_rows(x))
data_rdd.foreach(get_input)
# data_rdd.foreach(print)
# get_input(("125-234", "taxol causes pain", 0, 5, 13, 17))
# save_record(hbase_rdd)
# messages = hbase_rdd.take(1)
# for message in messages:
# text = message.split("\n")
# for row in text:
# print(json.loads(row))
def get_value(row):
print("**********************************************")
graph = tf.Graph()
rowkey = row[0]
checkpoint_file = "/home/sahil/Desktop/Relation_Extraction/data/1485336002/checkpoints/model-300"
print("Loading model................................")
with graph.as_default():
session_conf = tf.ConfigProto(
allow_soft_placement=allow_soft_placement,
log_device_placement=log_device_placement)
sess = tf.Session(config=session_conf)
with sess.as_default():
# Load the saved meta graph and restore variables
saver = tf.train.import_meta_graph("{}.meta".format(checkpoint_file))
saver.restore(sess, checkpoint_file)
input_x = graph.get_operation_by_name("X_train").outputs[0]
dropout_keep_prob = graph.get_operation_by_name("dropout_keep_prob").outputs[0]
predictions = graph.get_operation_by_name("output/predictions").outputs[0]
batch_predictions = sess.run(predictions, {input_x: [row[1]], dropout_keep_prob: 1.0})
print(batch_predictions)
return (rowkey, batch_predictions)