-
Notifications
You must be signed in to change notification settings - Fork 0
/
tracking.py
104 lines (78 loc) · 4.28 KB
/
tracking.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
from scipy.spatial import distance as dist
from collections import OrderedDict
import numpy as np
class Trackable:
def __init__(self, objectID, centroid):
self.objectID = objectID
self.centroids = [centroid]
self.directions = []
self.counted = False
class Tracker:
def __init__(self, maxDisappeared=10):
self.nextObjectID = 0
self.objects = OrderedDict()
self.disappeared = OrderedDict()
self.maxDisappeared = maxDisappeared
self.positions = []
self.z = 1
def register(self, centroid):
self.objects[self.nextObjectID] = centroid
self.disappeared[self.nextObjectID] = 0
self.nextObjectID += 1
def deregister(self, objectID):
del self.objects[objectID]
del self.disappeared[objectID]
self.z = 0
print('DEREGISTERED : ' + str(objectID))
return self.z
def update(self, rects):
if self.z == 0:
self.z = 1
if len(rects) == 0:
for objectID in list(self.disappeared.keys()):
self.disappeared[objectID] += 1
if self.disappeared[objectID] > self.maxDisappeared:
self.deregister(objectID)
return self.objects
inputCentroids = np.zeros((len(rects), 2), dtype="int")
for (i, (startX, startY, endX, endY)) in enumerate(rects):
cX = int((startX + endX) / 2.0)
cY = int((startY + endY) / 2.0)
inputCentroids[i] = (cX, cY)
if len(self.objects) == 0:
for i in range(0, len(inputCentroids)):
self.register(inputCentroids[i])
else:
objectIDs = list(self.objects.keys())
objectCentroids = list(self.objects.values())
D = dist.cdist(np.array(objectCentroids), inputCentroids)
rows = D.min(axis=1).argsort()
cols = D.argmin(axis=1)[rows]
usedRows = set()
usedCols = set()
for (row, col) in zip(rows, cols):
if row in usedRows or col in usedCols:
continue
objectID = objectIDs[row]
self.objects[objectID] = inputCentroids[col]
self.disappeared[objectID] = 0
usedRows.add(row)
usedCols.add(col)
unusedRows = set(range(0, D.shape[0])).difference(usedRows)
unusedCols = set(range(0, D.shape[1])).difference(usedCols)
print('#############################################')
print('np.array(objectCentroids) : ', np.array(objectCentroids), ' inputCentroids : ', inputCentroids)
print('D : ', D, ' rows : ', rows, ' cols : ', cols)
print('D.shape[0] : ', D.shape[0], ' D.shape[1] : ', D.shape[1])
print('usedRows : ', usedRows, ' usedCols : ', usedCols)
print('unusedRows : ', unusedRows, ' unusedCols : ', unusedCols)
if D.shape[0] >= D.shape[1]:
for row in unusedRows:
objectID = objectIDs[row]
self.disappeared[objectID] += 1
if self.disappeared[objectID] > self.maxDisappeared:
self.deregister(objectID)
else:
for col in unusedCols:
self.register(inputCentroids[col])
return self.objects