-
Notifications
You must be signed in to change notification settings - Fork 8
/
mkSimData2_1DBump.m
112 lines (97 loc) · 3.79 KB
/
mkSimData2_1DBump.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
% mkSimData2_1DBump.m
%
% Generates a simulated dataset with a 1D latent trajectory and 1D tuning curves generated from
% 1D Gaussian bumps.
%%
% Initialize paths (and create 'simdatadir' folder if necessary)
initpaths
fname = 'simdatadir/simdata2.mat'; % pathname of file to create
%% 1. Generate latent variables
nt = 1000; % number of time points
nf = 1; % number of latent dimension
nc = length(nt); % the dimension of the input
gridends = [ones(nc,1) nt(:)]; % range of function to consider
tgrid = gen_grid(gridends,nt,1); % generate the time grid
kAR1 = @(rho,len,x,z) covAR1iso([log(len); log(rho)/2], x, z); % autoregressive lap-1 kernel
kSE = @(rho,len,x,z) covSEiso([log(len); log(rho)/2], x, z, 0, 1); % squared exponential (RBF) kernel
latentTYPE = 1; % Latent Type: 1=AR1, 2=SE or RBF
switch latentTYPE
case 1, % AR1
len1 = 5; % length scale
rho1 = 3; % marginal variance
Kpriortrue = kAR1(rho1,len1,tgrid,tgrid); % Latent covariance
xx = mvnrnd(zeros(nt,1),Kpriortrue,nf)'; % Generate latent
for nn=1:nf
xx(xx(:,nn)<-6,nn) = -6;
xx(xx(:,nn)>6,nn) = 6;
end
case 2, % SE or RBF
len1 = 5; % length scale
rho1 = 1; % marginal variance
Kpriortrue = kSE(rho1,len1,tgrid,tgrid); % Latent covariance
xx = mvnrnd(zeros(nt,1),Kpriortrue,nf)'; % Generate latent
end
%% 2. Create neural tuning curves
nneur = 50; % number of neurons
ffTYPE = 3; % Tuning Curve Type: 1=AR1; 2=RBF; 3=gaussianBumps; 4=sin
switch ffTYPE
case 1, % AR1 cov function for GP
len2 = 5; % length scale
rho2 = 1; % marginal variance
covfun_true = @(x) kAR1(rho2,len2,x,x); % cov fun
ffun = @(x) exp(mvnrnd(zeros(1,length(x)),covfun_true(x),nneur)');
case 2, % RBF cov function for GP
len2 = 1; % length scale
rho2 = 2; % marginal variance
covfun_true = @(x) kSE(rho2,len2,x,x); % cov fun
ffun = @(x) exp(mvnrnd(zeros(1,length(x)),covfun_true(x),nneur)');
case 3, % gaussian-bump tuning curves
len2 = 0.5; % standard deviation
rho2 = 10; % marginal variance
ctrs = gen_grid([-6 6;-6 6],nneur*2,nf); % generate the center of the bump
ii = size(ctrs,1);
jj = randperm(ii);
ctrs = ctrs(jj(1:nneur),:);
ffun = @(x) kSE(rho2,len2,x,ctrs); % Gaussian bump function
ffTYPE = 2; % set the type to be SE for inference
case 4, % sinusoid function
phi = rand(nneur,1)*2*pi;
Omega = rand(nneur,nf)*5;
ffun = @(x)(3*sin(bsxfun(@plus,x*Omega',phi'))-2);
end
% Generate tuning curves ff
xgrid = gen_grid([-6 6;-6 6],50,nf); % x grid (for plotting purposes)
fffull = ffun([xx;xgrid]); % generate ff for xx and for grid
ff = fffull(1:nt,:); % sampled ff values
ffgrid = fffull(nt+1:end,:); % for plotting purposes only
%% 3. Simulate spike train
dtBin = 1; % bin size for representing time (here 1s => 1 Hz stimulus frame rate)
RefreshRate = 1/dtBin; % Refresh rate
yy = poissrnd(ff/RefreshRate); % Poisson spike counts
% Report number of spikes and spike rate
nsp = sum(yy(:))/nneur; % number of spikes
fprintf('Simulation: %d time bins, %d spikes (%.2f sp/s)\n', nt, nsp, nsp/nt*RefreshRate);
%% 4. Make plots
subplot(221);
plot(xgrid, ffgrid);
title('tuning curves');
xlabel('x');
subplot(222);
plot(1:nt, xx); title('latent x(t)');
subplot(223);
imagesc(cov(yy')); axis image; colorbar
title('covariance y(t)*y(t)^T'); xlabel('time'); ylabel('time');
subplot(224);
imagesc(yy'); colorbar,title('neural respse y(t)');
xlabel('time');
%% 3. Save the dataset
simdata.latentVariable = xx;
simdata.spikes = yy;
simdata.spikeRates = ff;
simdata.tuningCurve = ffgrid;
simdata.xgrid = xgrid;
simdata.tgrid = tgrid;
simdata.RefreshRate = RefreshRate;
simdata.latentTYPE = latentTYPE;
simdata.ffTYPE = ffTYPE;
save(fname, 'simdata');