Skip to content

Latest commit

 

History

History
76 lines (53 loc) · 1.42 KB

README.md

File metadata and controls

76 lines (53 loc) · 1.42 KB

yolov7-face TensorRT

yolov7-face

The Pytorch implementation is yolov7-face.

onnx export

step1. git clone https://github.com/derronqi/yolov7-face

step2. modify models/export.py

 #line 72
 #output_names = None
 # modified into:
 output_names = ["output"]

step3. modify models/yolo.py class IKeypoint

#line 308
# return x if self.training else (torch.cat(z, 1), x)
# modified into:
return x if self.training else torch.cat(z, 1)

step4. Export to onnx model

 cd yolov7-face
 python models/export.py --weights yolov7s-face.pt --grid 

How to Run, yolov7s-face as example

  1. Modify the tensorrt cuda opencv path in CMakeLists.txt

    #cuda 
    include_directories(/mnt/Gu/softWare/cuda-11.0/targets/x86_64-linux/include)
    link_directories(/mnt/Gu/softWare/cuda-11.0/targets/x86_64-linux/lib)
    
    #tensorrt 
    include_directories(/mnt/Gpan/tensorRT/TensorRT-8.2.0.6/include/)
    link_directories(/mnt/Gpan/tensorRT/TensorRT-8.2.0.6/lib/)
    
  2. build

    1. mkdir build
    2. cd build
    3. cmake ..
    4. make
    
    
  3. onnx to tensorrt model

    ./onnx2trt/onnx2trt  ../onnx_model/yolov7s-face.onnx ./yolov7s-face.trt  1
    
    
  4. inference

    ./yolov7_face yolov7s-face.trt ../images
    

    The results are saved in the build folder.

    image

contact

Tencent qq group: 871797331