-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathgmmTest.py
35 lines (31 loc) · 1.38 KB
/
gmmTest.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
"""Apply trained models to classify test data"""
from sklearn.mixture import GMM
from gmmClassifier import apply_model, run_test, load_data
import sys
import os
import numpy as np
if __name__=='__main__':
npzdir = sys.argv[1]
modeldir = sys.argv[2]
n_components = sys.argv[3]
covar = sys.argv[4]
#load models
models = {}
# langlist = ['MA', 'KO', 'IN', 'AR', 'HI', 'CZ', 'FR']
langlist = sys.argv[5:]
for lang in langlist:
if os.path.exists(os.path.join(modeldir, lang,
covar+'-'+n_components+'-'+lang+'.weights')):
models[lang] = GMM(n_components=int(n_components), covariance_type=covar)
models[lang].weights_ = np.load(os.path.join(modeldir, lang,
covar+'-'+n_components+'-'+lang+'.weights'))
models[lang].means_ = np.load(os.path.join(modeldir, lang,
covar+'-'+n_components+'-'+lang+'.means'))
models[lang].covars_ = np.load(os.path.join(modeldir, lang,
covar+'-'+n_components+'-'+lang+'.covars'))
else:
print 'Error: model not trained with these parameters for', lang
#load data
#langlist = models.keys()
data = load_data(npzdir, langlist)
run_test(models, data)