-
Notifications
You must be signed in to change notification settings - Fork 68
/
Copy pathproduce_train_pair_data.py
235 lines (195 loc) · 9.29 KB
/
produce_train_pair_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
#
# Authors: Bowen Wen
# Contact: wenbowenxjtu@gmail.com
# Created in 2020
#
# Copyright (c) Rutgers University, 2020 All rights reserved.
#
# Wen, B., C. Mitash, B. Ren, and K. E. Bekris. "se (3)-TrackNet:
# Data-driven 6D Pose Tracking by Calibrating Image Residuals in
# Synthetic Domains." In IEEE/RSJ International Conference on Intelligent
# Robots and Systems (IROS). 2020.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
# * Redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer.
# * Redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in the
# documentation and/or other materials provided with the distribution.
# * Neither the name of the PRACSYS, Bowen Wen, Rutgers University,
# nor the names of its contributors may be used to
# endorse or promote products derived from this software without
# specific prior written permission.
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 'AS IS' AND
# ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
# WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER BE LIABLE FOR ANY
# DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
# (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
# LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
# ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
# SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#
import open3d as o3d
import sys,shutil,pickle,trimesh
import os
from scipy import spatial
import argparse
import torch
import numpy as np
import yaml
from offscreen_renderer import *
from Utils import *
import time
import numpy as np
import cv2
from PIL import Image
import copy
import glob
class ProducerPurturb:
'''This can be used both as eval or purturb on training data to get large training set
'''
def __init__(self,dataset_info,check_vis=False):
self.count = 0
self.check_vis = check_vis
self.dataset_info = dataset_info
self.image_size = (self.dataset_info['resolution'],self.dataset_info['resolution'])
self.object_width = dataset_info['object_width']
print('self.object_width=',self.object_width)
self.cam_K = np.zeros((3,3)).astype(np.float32)
self.cam_K[0,0] = self.dataset_info['camera']['focalX']
self.cam_K[1,1] = self.dataset_info['camera']['focalY']
self.cam_K[0,2] = self.dataset_info['camera']['centerX']
self.cam_K[1,2] = self.dataset_info['camera']['centerY']
self.cam_K[2,2] = 1
print('self.cam_K:\n',self.cam_K)
obj_path = self.dataset_info['models'][0]['model_path'].replace('.ply','.obj')
print('obj_path',obj_path)
self.renderer = Renderer([obj_path],self.cam_K,dataset_info['camera']['height'],dataset_info['camera']['width'])
self.glcam_in_cvcam = np.array([[1,0,0,0],
[0,-1,0,0],
[0,0,-1,0],
[0,0,0,1]])
def generate(self,out_dir,B_in_cam,current_rgb,current_depth,num_sample,class_id,current_seg=None,debug=False):
'''
Take one real image and sample various purturbation around for evaluating the mean error
'''
max_trans = self.dataset_info['max_translation']
max_rot = self.dataset_info['max_rotation'] #degree
H = self.dataset_info['camera']['height']
W = self.dataset_info['camera']['width']
#========================= Check visibility =============================
if self.check_vis:
num_visible = np.sum(current_seg==class_id)
if num_visible<=100:
return
color, depth = self.renderer.render([B_in_cam])
visible_ratio = num_visible/float(np.sum(depth>0.1))
if visible_ratio<0.1:
return
pts = []
rot_pts = []
for i in range(num_sample):
B_in_A = random_gaussian_magnitude(max_trans, max_rot)
A_in_cam = B_in_cam.dot(np.linalg.inv(B_in_A))
projected = self.cam_K.dot(A_in_cam[:3,3].reshape(3,1)).reshape(-1)
u = projected[0]/projected[2]
v = projected[1]/projected[2]
if u<0 or u>=W or v<0 or v>=H:
continue
bb = compute_bbox(A_in_cam, self.cam_K, self.object_width, scale=(1000, 1000, 1000))
rgb, depth = self.renderer.render([A_in_cam])
depth = (depth*1000).astype(np.uint16)
rgbA,depthA = crop_bbox(rgb, depth, bb, self.image_size)
depthA = depthA.astype(np.uint16)
if current_seg is not None:
rgbB, depthB, segB = crop_bbox(current_rgb, current_depth, bb, self.image_size, current_seg)
else:
rgbB, depthB = crop_bbox(current_rgb, current_depth, bb, self.image_size)
if np.sum(segB==class_id)<100:
continue
depthB = depthB.astype(np.uint16)
Image.fromarray(rgbA).save(out_dir+'%07drgbA.png'%(self.count),optimize=True)
Image.fromarray(rgbB).save(out_dir+'%07drgbB.png'%(self.count),optimize=True)
cv2.imwrite(out_dir+'%07ddepthA.png'%(self.count),depthA)
cv2.imwrite(out_dir+'%07ddepthB.png'%(self.count),depthB)
np.savez(out_dir+'%07dmeta.npz'%(self.count),A_in_cam=A_in_cam,B_in_cam=B_in_cam)
if current_seg is not None:
segB = (segB==class_id).astype(np.uint8)
cv2.imwrite(out_dir+'%07dsegB.png'%(self.count),segB)
self.count += 1
def completeBlender():
'''Domain Randomization
'''
class_id = 0
code_dir = os.path.dirname(os.path.realpath(__file__))
data_folder = f'{code_dir}/generated_data_pair/'
os.system(f'rm -rf {data_folder} && mkdir -p {data_folder}')
dataset_info_dir = f'{code_dir}/dataset_info.yml'
with open(dataset_info_dir, 'r') as ff:
dataset_info = yaml.safe_load(ff)
if 'object_width' not in dataset_info:
print('Computing object width')
mesh = trimesh.load(dataset_info['models'][0]['model_path'])
model_3d = mesh.vertices
object_max_width = compute_cloud_diameter(model_3d) * 1000
bounding_box = dataset_info['boundingbox']
with_add = bounding_box / 100 * object_max_width
object_width = object_max_width + with_add
dataset_info['object_width'] = float(object_width)
print('object_width=',object_width)
with open(f'{data_folder}/dataset_info.yml', 'w') as ff:
yaml.dump(dataset_info, ff)
cam_K = np.array([[dataset_info['camera']['focalX'], 0, dataset_info['camera']['centerX']],
[0, dataset_info['camera']['focalY'], dataset_info['camera']['centerY']],
[0, 0, 1]])
cvcam_in_blendercam = np.array([[1,0,0,0],
[0,-1,0,0],
[0,0,-1,0],
[0,0,0,1]])
num_val = dataset_info['val_samples']
out_train_path = data_folder+'train_data_blender_DR/'
out_val_path = data_folder+'validation_data_blender_DR/'
os.system('rm -rf '+out_train_path+' '+out_val_path)
os.makedirs(out_train_path)
os.makedirs(out_val_path)
producer = ProducerPurturb(dataset_info)
code_dir = os.path.dirname(os.path.realpath(__file__))
rgb_files = sorted(glob.glob(f'{code_dir}/generated_data/*rgb.png'))
assert len(rgb_files)>0
print('len(rgb_files): ',len(rgb_files))
for i in range(0,len(rgb_files)):
if i%100==0:
print('complete pair data class={}: {}/{}'.format(class_id,i,len(rgb_files)))
rgb_file = rgb_files[i]
meta = np.load(rgb_file.replace('rgb.png','poses_in_world.npz'))
class_ids = meta['class_ids']
poses_in_world = meta['poses_in_world']
blendercam_in_world = meta['blendercam_in_world']
pos = np.where(class_ids==class_id)
B_in_cam = np.linalg.inv(cvcam_in_blendercam).dot(np.linalg.inv(blendercam_in_world).dot(poses_in_world[pos,:,:].reshape(4,4)))
current_depth = cv2.imread(rgb_file.replace('rgb','depth'),cv2.IMREAD_UNCHANGED)
current_seg = cv2.imread(rgb_file.replace('rgb','seg'), cv2.IMREAD_UNCHANGED).astype(np.uint8)
if len(current_seg.shape)==3:
current_seg = current_seg[:,:,0]
if np.sum(current_seg==class_id)<100:
print(f"Visible pixels={np.sum(current_seg==class_id)}, skip {rgb_file}")
continue
current_rgb = np.array(Image.open(rgb_file))[:,:,:3]
producer.generate(out_train_path,B_in_cam,current_rgb,current_depth,num_sample=1,class_id=class_id,current_seg=current_seg,debug=False)
#Prepare val data
rgbA_files = sorted(glob.glob(out_train_path+'*rgbA.png'))
rgbA_files.reverse()
for i in range(num_val):
if i%1000==0:
print('moving to val: {}/{}'.format(i,num_val))
shutil.move(rgbA_files[i],out_val_path+'%07drgbA.png'%(i))
shutil.move(rgbA_files[i].replace('A','B'),out_val_path+'%07drgbB.png'%(i))
shutil.move(rgbA_files[i].replace('rgbA','depthA'),out_val_path+'%07ddepthA.png'%(i))
shutil.move(rgbA_files[i].replace('rgbA','depthB'),out_val_path+'%07ddepthB.png'%(i))
shutil.move(rgbA_files[i].replace('rgbA.png','meta.npz'),out_val_path+'%07dmeta.npz'%(i))
shutil.move(rgbA_files[i].replace('rgbA','segB'),out_val_path+'%07dsegB.png'%(i))
if __name__ == '__main__':
completeBlender()