forked from KoenVanNoten/HVSR_to_virtual_borehole
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathHVSR polarisation.py
250 lines (208 loc) · 11.2 KB
/
HVSR polarisation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
# coding=utf-8
### Koen Van Noten
### Royal Observatory of Belgium
### PLOTTING ROTATIONAL H/V RESULTS FROM the .hv module of GEOPSY
### Van Noten, K., Lecocq, T. Gelis, C., Meyvis, B., Molron, J., Debacer, T.N., Devleeschouwer, X. 2022.
### Brussels’ bedrock paleorelief from borehole-controlled powerlaws linking polarised H/V resonance frequencies and sediment thickness.
### Journal of Seismology. https://doi.org/10.1007/s10950-021-10039-8
### This script loads one or all Geopsy HV rotate module files and replots it into a polaris graph.
### It will pick the azimuth at which the maximum resonance frequency occurs.
### Data is read from the database file
### All rotational data that you plotted is then exported to the database file named database_file & _polarisation_plotted.csv
### Following data is exported:
### A_max max_freq max_Azi A_min min_freq min_Azi
### A_max: maximum amplitude at resonance frequency deduced from the HVSR polarisation analysis (see Fig. 4 of paper)
### max_freq: Resonance frequency at A_max
### max_Azi: Azimuth at which resonance frequency is maximum (deduced from polarisation analysis)
### A_min: minimum amplitude at resonance frequency deduced from the HVSR polarisation analysis (see Fig. 4 of paper)
### min_fre q: Azimuth at which resonance frequency is minimal (deduced from polarisation analysis)
### min_Azi: Azimuth at which resonance frequency is minimum (deduced from polarisation analysis)
import os
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
import matplotlib.ticker as ticker
### load the database containing the ID names ("Name" will be used for the title, "Filename" for loading the data
database_file = 'HVSR database file_f0_from_hv.csv'
in_folder = 'Data' #Folder containing the Geopsy rotate module file
out_folder = 'Output' #Folder in which the polarisation figures will be saved
### choose to plot all files from a list or only one specific ID given in below
### if plot_all is True, rotational data will be exported to a "HVSR rotation.csv" file
plot_all = 1 #False = manual search
IDs = ['A201', 'A202'] #list of data in manual search
save_fig = 1 # save results to fig (default = png)
# if auto_freq, frequency will be chosen automatically around f0
# if false, give the range of the frequency
auto_freq = 0
limfreq_min = 0.5
limfreq_max = 1.49
# manual = decide to set the maximum of the Amplitude color scale manually (and give the A_amplitude)
# if several plots need to be made, it might be easier to fix the Amplitude so that one can compare the different plots
manual = 0
A_manual = 10
# Search for the maximum values in a certain frequency range. Don't use this function when plot_all (or all freqs will be plotted in this range)
freq_range = 0
f_range = [1.15, 1.4]
# pacing of the ticks on the frequency distribution
steps = 0.2
################################################
# Main program
################################################
rot_data = []
def plot_rotationaldata(in_filespec,ID, Name, limfreq_min,limfreq_max):
df = pd.read_csv(in_filespec, delimiter=' ', skiprows=0, engine = 'python')
freq = df["x"]
Azi = df["y"]
A = df["val"]
## Get the rotation step. Default = 10° in Geopsy. Can be changed since Geopsy version 3.3.3
groups = df.groupby(Azi)
rotation_classes = len(groups) ## gives the amount of rotation step classes. = 19 for 10° steps
rotation_step = int(180/(rotation_classes-1)) ## gives the rotation_step
### reshape the amplitude column
A_reshape = A.values.reshape(rotation_classes,int(len(freq)/rotation_classes))
## define the region where Amplitudes have to be plotted
## freq = xi; yi = Azimuth; A_reshape is amplitude
xi = np.array([np.geomspace(np.min(freq), np.max(freq), int(len(freq)/rotation_classes)),]*rotation_classes)
yi = np.array([np.arange(0,190,rotation_step),]*int(len(freq)/rotation_classes)).transpose()
### flip the polar plot to mirror it on the W side
yj = np.array([np.arange(180,370,rotation_step),]*int(len(freq)/rotation_classes)).transpose()
### find the polarization by searching for maximum amplitude for each azimuth
Amax = []
freqmax = []
Azimax = []
for i in np.arange(0,180+rotation_step,rotation_step):
index = np.array(np.where((Azi == i)))[0]
## search for maximum and minimum A0 in a given frequency range
if freq_range:
index_range = []
for ind in index:
if freq[ind] >= f_range[0]:
if freq[ind] <= f_range[1]:
index_range.append(ind)
index = index_range
## find maximum amplitude of each angle (0--> 180) so we later can find the max and min value in this list
## append the max Amplitude in the i angle
Amax.append(np.max(A[index]))
## append the frequency corresponding to that amplitude
freqmax.append(freq[index[0] + np.argmax(A[index])])
## append the angle to a list
Azimax.append(i)
## find the maximum in the max amplitude list
A_max = np.max(Amax)
#find the minima and maxima (white and red dots in the plot)
max_freq = freqmax[np.argmax(Amax)]
max_Azi = Azimax[np.argmax(Amax)]
A_min = np.min(Amax)
min_freq = freqmax[np.argmin(Amax)]
min_Azi = Azimax[np.argmin(Amax)].transpose()
####### Let's plot
plt.figure(figsize=(6.5,5))
ax = plt.subplot(111, polar=True)
### for log plots - use fixed amplitudes for whole the dataset or use a flexible A0max for each plot
if A0_max == 0:
plt.pcolormesh(np.deg2rad(yi), np.log(xi), A_reshape, shading='auto', cmap='viridis', vmin=0, vmax=np.round(np.max(A), 0), rasterized=True)
plt.pcolormesh(np.deg2rad(yj), np.log(xi), A_reshape, shading='auto', cmap='viridis', vmin=0, vmax=np.round(np.max(A), 0),rasterized=True)
else:
plt.pcolormesh(np.deg2rad(yi), np.log(xi), A_reshape, shading='auto', cmap='viridis', vmin=0, vmax=np.round(A0_max, 0), rasterized=True)
plt.pcolormesh(np.deg2rad(yj), np.log(xi), A_reshape, shading='auto', cmap='viridis', vmin=0, vmax=np.round(A0_max, 0), rasterized=True)
cbar = plt.colorbar(pad = 0.1, format = '%.0f')
cbar.set_label('H/V Amplitude', rotation=90)
if A_max < 10:
format_max = round(A_max,3)
else:
format_max = round(A_max,2)
if A_min < 10:
format_min = round(A_min, 3)
else:
format_min = round(A_min,2)
### plot the min and maxima (red and white dots)
plt.scatter(np.deg2rad(max_Azi), np.log(max_freq), c='red', edgecolor='black',
label = "Max. Ampl. ("+ str(format_max) + ') at \n' + str(max_Azi) + '° - '
+ str(max_Azi+180) +'° for $f_0$ ' + format(round(max_freq,2), '.2f') + 'Hz', zorder = 3)
plt.scatter(np.deg2rad(min_Azi), np.log(min_freq), c='white', edgecolor='black',
label = "Min. Ampl. ("+ str(format_min) + ') at \n' + str(min_Azi) + '° - ' + str(min_Azi+180) +'° for $f_0$ ' + format(round(min_freq,2), '.2f') + 'Hz', zorder = 3)
plt.scatter(np.deg2rad(max_Azi+180), np.log(max_freq), c='red', edgecolor='black', zorder = 3)
plt.scatter(np.deg2rad(min_Azi+180), np.log(min_freq),c='white', edgecolor='black', zorder = 3)
### modify the rotational options
ax.set_theta_direction('clockwise')
ax.set_theta_zero_location('N')
ax.set_rlabel_position(0)
ax.text(np.radians(180),np.log(ax.get_rmax()/3.5),'Frequency',fontsize=8,
rotation=90,ha='left',va='center', color= 'white')
# limits of the frequency and modify the ticks of the frequency
if auto_freq:
limfreq_min = round(max_freq,1) - 0.4
limfreq_max = round(max_freq,1) + 0.4
ax.set_rlim(np.log(limfreq_min),np.log(limfreq_max))
pos_list = np.log(np.arange(limfreq_min+0.1,limfreq_max,steps/2))
freq_list = np.round(np.arange(limfreq_min+0.1,limfreq_max,steps),3)
freqs = []
for i in freq_list:
freqs.append(i)
freqs.append('')
ax.yaxis.set_major_locator(ticker.FixedLocator(pos_list))
ax.yaxis.set_minor_locator(ticker.FixedLocator(pos_list+0.1))
ax.yaxis.set_major_formatter(ticker.FixedFormatter((freqs)))
rlabels = ax.get_ymajorticklabels()
for label in rlabels:
label.set_color('white')
# Specify the ticks of the azimuth
ax.set_xticks(np.pi/180. * np.linspace(0, 360, 18, endpoint=False))
ax.yaxis.set_tick_params(labelsize=9)
plt.legend(loc='best', bbox_to_anchor=(-0.4, -0.35, 0.5, 0.5), frameon=False)
plt.grid(linestyle='-.', linewidth=0.2, alpha = 1, zorder = 200, color = 'grey')
# Plot the title
plt.title("Resonance frequency polarisation of %s"%Name, y=1.08)
plt.tight_layout()
if save_fig:
plt.savefig(os.path.join(out_folder, '%s'%ID + '_polarisation.png'))
#store the data
rot_data.append([A_max, max_freq, max_Azi,A_min, min_freq, min_Azi])
print(ID, round(A_max,2), round(max_freq,2),round(max_Azi,2),round(A_min,2),round(min_freq,2), min_Azi)
##### plot all rotational data & apply the definition
print('ID', 'A_max', 'max_freq', 'max_Azi','A_min', 'min_freq', 'min_Azi')
if plot_all:
df2 = pd.read_csv(database_file, delimiter=',', skiprows=0, engine = 'python')
IDs = df2["Filename"]
A0s = df2["A0"]
Names = df2["Name"]
for i,j in zip(IDs, Names):
HV_file = os.path.join(in_folder, '%s'% i)
if manual:
A0_max = A_manual
else:
# set maximum amplitude from A0 provided in the database list
A0_max = round(A0s[(IDs == i).argmax()] + 1, 0)
try:
plot_rotationaldata(HV_file, i, j, limfreq_min, limfreq_max)
# in newer Geopsy versions the rotation data is saved as .hv.grid extension
except BaseException as e:
HV_file = os.path.join(in_folder, '%s.hv.grid' % i)
plot_rotationaldata(HV_file, i, j, limfreq_min, limfreq_max)
pass
# Export the polarisation data and add it to the HVSR database
out_filespec = os.path.splitext(database_file)[0] + "_polarisation_plotted.csv"
outputfile = pd.read_csv(database_file)
df_polarisation = pd.DataFrame(rot_data, columns = ['A_max', 'max_freq', 'max_Azi','A_min', 'min_freq', 'min_Azi'])
outputfile = outputfile.join(df_polarisation)
outputfile.to_csv(out_filespec, index = False)
else:
IDs = IDs
df2 = pd.read_csv(database_file, delimiter=',', skiprows=0, engine='python', index_col = "Filename")
A0s = df2["A0"]
for i,j in zip(IDs, Names):
HV_file = os.path.join(in_folder, '%s'% i)
if manual:
A0_max = A_manual
else:
# set maximum amplitude from A0 provided in the database list and add 4
A0_max = np.array(round(A0s[(i)],0)+1)
plot_rotationaldata(HV_file, i, j, limfreq_min, limfreq_max)
plt.show()
# Export the polarisation data and add it to the HVSR database
out_filespec = os.path.splitext(database_file)[0] + "_polarisation_plotted.csv"
outputfile = pd.read_csv(database_file)
df_polarisation = pd.DataFrame(rot_data,
columns=['A_max', 'max_freq', 'max_Azi', 'A_min', 'min_freq', 'min_Azi'])
outputfile = outputfile.join(df_polarisation)
outputfile.to_csv(out_filespec, index=False)