forked from shunliz/Machine-Learning
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtuyouhua.md
26 lines (13 loc) · 942 Bytes
/
tuyouhua.md
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
Jensen不等式
如果$$f: \omega->R$$是一个函数,则对于任何$$[{ x_i \in \Omega }]^{n}_{i=1}$$以及凸组合$$\sum_{i=1}^{n} w_ix_i$$都有
$$\sum_{i=1}^{n} w_if(x_i)>=f(\sum_{i=1}^{n} w_ix_i)$$
---
拉格朗日对偶函数
$$L(x,\lambda ,v) = f_0(x)+\sum_{i=1}^{m}\lambda _if_i(x)+\sum_{i=1}^{P}v_ih_i(x)$$
根据拉个朗日函数,我们定义i拉格朗日对偶函数$$g(\lambda,v):R^{m+p}->R$$
$$x = y$$$$x = g(\lambda,v)=inf_{x \in D} L(x, \lambda, v)=inf_{x \in D} f_0(x)+\sum_{i=1}^{m}\lambda _if_i(x)+\sum_{i=1}^{P}v_ih_i(x)$$
---
对偶问题:
最大化$$g(\lambda,v)$$
不等式条件:$$\lambda_i>=0$$![](/assets/touyuhua1.png)![](/assets/touyouhua2.png)![](/assets/touyouhua3.png)![](/assets/touyouhua4.png)![](/assets/touyouhua5.png)![](/assets/touyouhua6.png)
![](/assets/touyouhua7.png)![](/assets/touyouhua8.png)![](/assets/touyouhua9.png)![](/assets/touyouhua10.png)![](/assets/touyouhua11.png)