forked from shunliz/Machine-Learning
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsvm-code.md
305 lines (253 loc) · 11.6 KB
/
svm-code.md
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
```py
from numpy import *
import time
import matplotlib.pyplot as plt
# calulate kernel value
def calcKernelValue(matrix_x, sample_x, kernelOption):
kernelType = kernelOption[0]
numSamples = matrix_x.shape[0]
kernelValue = mat(zeros((numSamples, 1)))
if kernelType == 'linear':
kernelValue = matrix_x * sample_x.T
elif kernelType == 'rbf':
sigma = kernelOption[1]
if sigma == 0:
sigma = 1.0
for i in xrange(numSamples):
diff = matrix_x[i, :] - sample_x
kernelValue[i] = exp(diff * diff.T / (-2.0 * sigma**2))
else:
raise NameError('Not support kernel type! You can use linear or rbf!')
return kernelValue
# calculate kernel matrix given train set and kernel type
def calcKernelMatrix(train_x, kernelOption):
numSamples = train_x.shape[0]
kernelMatrix = mat(zeros((numSamples, numSamples)))
for i in xrange(numSamples):
kernelMatrix[:, i] = calcKernelValue(train_x, train_x[i, :], kernelOption)
return kernelMatrix
# define a struct just for storing variables and data
class SVMStruct:
def __init__(self, dataSet, labels, C, toler, kernelOption):
self.train_x = dataSet # each row stands for a sample
self.train_y = labels # corresponding label
self.C = C # slack variable
self.toler = toler # termination condition for iteration
self.numSamples = dataSet.shape[0] # number of samples
self.alphas = mat(zeros((self.numSamples, 1))) # Lagrange factors for all samples
self.b = 0
self.errorCache = mat(zeros((self.numSamples, 2)))
self.kernelOpt = kernelOption
self.kernelMat = calcKernelMatrix(self.train_x, self.kernelOpt)
# calculate the error for alpha k
def calcError(svm, alpha_k):
output_k = float(multiply(svm.alphas, svm.train_y).T * svm.kernelMat[:, alpha_k] + svm.b)
error_k = output_k - float(svm.train_y[alpha_k])
return error_k
# update the error cache for alpha k after optimize alpha k
def updateError(svm, alpha_k):
error = calcError(svm, alpha_k)
svm.errorCache[alpha_k] = [1, error]
# select alpha j which has the biggest step
def selectAlpha_j(svm, alpha_i, error_i):
svm.errorCache[alpha_i] = [1, error_i] # mark as valid(has been optimized)
candidateAlphaList = nonzero(svm.errorCache[:, 0].A)[0] # mat.A return array
maxStep = 0; alpha_j = 0; error_j = 0
# find the alpha with max iterative step
if len(candidateAlphaList) > 1:
for alpha_k in candidateAlphaList:
if alpha_k == alpha_i:
continue
error_k = calcError(svm, alpha_k)
if abs(error_k - error_i) > maxStep:
maxStep = abs(error_k - error_i)
alpha_j = alpha_k
error_j = error_k
# if came in this loop first time, we select alpha j randomly
else:
alpha_j = alpha_i
while alpha_j == alpha_i:
alpha_j = int(random.uniform(0, svm.numSamples))
error_j = calcError(svm, alpha_j)
return alpha_j, error_j
# the inner loop for optimizing alpha i and alpha j
def innerLoop(svm, alpha_i):
error_i = calcError(svm, alpha_i)
### check and pick up the alpha who violates the KKT condition
## satisfy KKT condition
# 1) yi*f(i) >= 1 and alpha == 0 (outside the boundary)
# 2) yi*f(i) == 1 and 0<alpha< C (on the boundary)
# 3) yi*f(i) <= 1 and alpha == C (between the boundary)
## violate KKT condition
# because y[i]*E_i = y[i]*f(i) - y[i]^2 = y[i]*f(i) - 1, so
# 1) if y[i]*E_i < 0, so yi*f(i) < 1, if alpha < C, violate!(alpha = C will be correct)
# 2) if y[i]*E_i > 0, so yi*f(i) > 1, if alpha > 0, violate!(alpha = 0 will be correct)
# 3) if y[i]*E_i = 0, so yi*f(i) = 1, it is on the boundary, needless optimized
if (svm.train_y[alpha_i] * error_i < -svm.toler) and (svm.alphas[alpha_i] < svm.C) or\
(svm.train_y[alpha_i] * error_i > svm.toler) and (svm.alphas[alpha_i] > 0):
# step 1: select alpha j
alpha_j, error_j = selectAlpha_j(svm, alpha_i, error_i)
alpha_i_old = svm.alphas[alpha_i].copy()
alpha_j_old = svm.alphas[alpha_j].copy()
# step 2: calculate the boundary L and H for alpha j
if svm.train_y[alpha_i] != svm.train_y[alpha_j]:
L = max(0, svm.alphas[alpha_j] - svm.alphas[alpha_i])
H = min(svm.C, svm.C + svm.alphas[alpha_j] - svm.alphas[alpha_i])
else:
L = max(0, svm.alphas[alpha_j] + svm.alphas[alpha_i] - svm.C)
H = min(svm.C, svm.alphas[alpha_j] + svm.alphas[alpha_i])
if L == H:
return 0
# step 3: calculate eta (the similarity of sample i and j)
eta = 2.0 * svm.kernelMat[alpha_i, alpha_j] - svm.kernelMat[alpha_i, alpha_i] \
- svm.kernelMat[alpha_j, alpha_j]
if eta >= 0:
return 0
# step 4: update alpha j
svm.alphas[alpha_j] -= svm.train_y[alpha_j] * (error_i - error_j) / eta
# step 5: clip alpha j
if svm.alphas[alpha_j] > H:
svm.alphas[alpha_j] = H
if svm.alphas[alpha_j] < L:
svm.alphas[alpha_j] = L
# step 6: if alpha j not moving enough, just return
if abs(alpha_j_old - svm.alphas[alpha_j]) < 0.00001:
updateError(svm, alpha_j)
return 0
# step 7: update alpha i after optimizing aipha j
svm.alphas[alpha_i] += svm.train_y[alpha_i] * svm.train_y[alpha_j] \
* (alpha_j_old - svm.alphas[alpha_j])
# step 8: update threshold b
b1 = svm.b - error_i - svm.train_y[alpha_i] * (svm.alphas[alpha_i] - alpha_i_old) \
* svm.kernelMat[alpha_i, alpha_i] \
- svm.train_y[alpha_j] * (svm.alphas[alpha_j] - alpha_j_old) \
* svm.kernelMat[alpha_i, alpha_j]
b2 = svm.b - error_j - svm.train_y[alpha_i] * (svm.alphas[alpha_i] - alpha_i_old) \
* svm.kernelMat[alpha_i, alpha_j] \
- svm.train_y[alpha_j] * (svm.alphas[alpha_j] - alpha_j_old) \
* svm.kernelMat[alpha_j, alpha_j]
if (0 < svm.alphas[alpha_i]) and (svm.alphas[alpha_i] < svm.C):
svm.b = b1
elif (0 < svm.alphas[alpha_j]) and (svm.alphas[alpha_j] < svm.C):
svm.b = b2
else:
svm.b = (b1 + b2) / 2.0
# step 9: update error cache for alpha i, j after optimize alpha i, j and b
updateError(svm, alpha_j)
updateError(svm, alpha_i)
return 1
else:
return 0
# the main training procedure
def trainSVM(train_x, train_y, C, toler, maxIter, kernelOption = ('rbf', 1.0)):
# calculate training time
startTime = time.time()
# init data struct for svm
svm = SVMStruct(mat(train_x), mat(train_y), C, toler, kernelOption)
# start training
entireSet = True
alphaPairsChanged = 0
iterCount = 0
# Iteration termination condition:
# Condition 1: reach max iteration
# Condition 2: no alpha changed after going through all samples,
# in other words, all alpha (samples) fit KKT condition
while (iterCount < maxIter) and ((alphaPairsChanged > 0) or entireSet):
alphaPairsChanged = 0
# update alphas over all training examples
if entireSet:
for i in xrange(svm.numSamples):
alphaPairsChanged += innerLoop(svm, i)
print '---iter:%d entire set, alpha pairs changed:%d' % (iterCount, alphaPairsChanged)
iterCount += 1
# update alphas over examples where alpha is not 0 & not C (not on boundary)
else:
nonBoundAlphasList = nonzero((svm.alphas.A > 0) * (svm.alphas.A < svm.C))[0]
for i in nonBoundAlphasList:
alphaPairsChanged += innerLoop(svm, i)
print '---iter:%d non boundary, alpha pairs changed:%d' % (iterCount, alphaPairsChanged)
iterCount += 1
# alternate loop over all examples and non-boundary examples
if entireSet:
entireSet = False
elif alphaPairsChanged == 0:
entireSet = True
print 'Congratulations, training complete! Took %fs!' % (time.time() - startTime)
return svm
# testing your trained svm model given test set
def testSVM(svm, test_x, test_y):
test_x = mat(test_x)
test_y = mat(test_y)
numTestSamples = test_x.shape[0]
supportVectorsIndex = nonzero(svm.alphas.A > 0)[0]
supportVectors = svm.train_x[supportVectorsIndex]
supportVectorLabels = svm.train_y[supportVectorsIndex]
supportVectorAlphas = svm.alphas[supportVectorsIndex]
matchCount = 0
for i in xrange(numTestSamples):
kernelValue = calcKernelValue(supportVectors, test_x[i, :], svm.kernelOpt)
predict = kernelValue.T * multiply(supportVectorLabels, supportVectorAlphas) + svm.b
if sign(predict) == sign(test_y[i]):
matchCount += 1
accuracy = float(matchCount) / numTestSamples
return accuracy
# show your trained svm model only available with 2-D data
def showSVM(svm):
if svm.train_x.shape[1] != 2:
print "Sorry! I can not draw because the dimension of your data is not 2!"
return 1
# draw all samples
for i in xrange(svm.numSamples):
if svm.train_y[i] == -1:
plt.plot(svm.train_x[i, 0], svm.train_x[i, 1], 'or')
elif svm.train_y[i] == 1:
plt.plot(svm.train_x[i, 0], svm.train_x[i, 1], 'ob')
# mark support vectors
supportVectorsIndex = nonzero(svm.alphas.A > 0)[0]
for i in supportVectorsIndex:
plt.plot(svm.train_x[i, 0], svm.train_x[i, 1], 'oy')
# draw the classify line
w = zeros((2, 1))
for i in supportVectorsIndex:
w += multiply(svm.alphas[i] * svm.train_y[i], svm.train_x[i, :].T)
min_x = min(svm.train_x[:, 0])[0, 0]
max_x = max(svm.train_x[:, 0])[0, 0]
y_min_x = float(-svm.b - w[0] * min_x) / w[1]
y_max_x = float(-svm.b - w[0] * max_x) / w[1]
plt.plot([min_x, max_x], [y_min_x, y_max_x], '-g')
plt.show()
```
测试代码:
```
from numpy import *
import SVM
################## test svm #####################
## step 1: load data
print "step 1: load data..."
dataSet = []
labels = []
fileIn = open('E:/Python/Machine Learning in Action/testSet.txt')
for line in fileIn.readlines():
lineArr = line.strip().split('\t')
dataSet.append([float(lineArr[0]), float(lineArr[1])])
labels.append(float(lineArr[2]))
dataSet = mat(dataSet)
labels = mat(labels).T
train_x = dataSet[0:81, :]
train_y = labels[0:81, :]
test_x = dataSet[80:101, :]
test_y = labels[80:101, :]
## step 2: training...
print "step 2: training..."
C = 0.6
toler = 0.001
maxIter = 50
svmClassifier = SVM.trainSVM(train_x, train_y, C, toler, maxIter, kernelOption = ('linear', 0))
## step 3: testing
print "step 3: testing..."
accuracy = SVM.testSVM(svmClassifier, test_x, test_y)
## step 4: show the result
print "step 4: show the result..."
print 'The classify accuracy is: %.3f%%' % (accuracy * 100)
SVM.showSVM(svmClassifier)
```