forked from shunliz/Machine-Learning
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvoicemulumd.md
1094 lines (220 loc) · 19.2 KB
/
voicemulumd.md
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
## 目录 · · · · · ·
译者序 iv
序 vii
前言 ix
术语缩写 xxii
符号 xxvii
第 1 章 简介 1
1.1 自动语音识别:更好的沟通之桥 . . . . . . . . . . . . . . . . . . . . . . . 1
1.1.1 人类之间的交流 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.1.2 人机交流 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 语音识别系统的基本结构 . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 全书结构 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3.1 第一部分:传统声学模型 . . . . . . . . . . . . . . . . . . . . . . 6
1.3.2 第二部分:深度神经网络 . . . . . . . . . . . . . . . . . . . . . . 6
1.3.3 第三部分:语音识别中的 DNN-HMM 混合系统 . . . . . . . . . . 7
1.3.4 第四部分:深度神经网络中的表征学习 . . . . . . . . . . . . . . 7
1.3.5 第五部分:高级的深度模型 . . . . . . . . . . . . . . . . . . . . . 7
第一部分 传统声学模型 9
第 2 章 混合高斯模型 11
2.1 随机变量 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 高斯分布和混合高斯随机变量 . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3 参数估计 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.4 采用混合高斯分布对语音特征建模 . . . . . . . . . . . . . . . . . . . . . 16
第 3 章 隐马尔可夫模型及其变体 19
3.1 介绍 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2 马尔可夫链 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.3 序列与模型 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.3.1 隐马尔可夫模型的性质 . . . . . . . . . . . . . . . . . . . . . . . . 23
3.3.2 隐马尔可夫模型的仿真 . . . . . . . . . . . . . . . . . . . . . . . . 24
3.3.3 隐马尔可夫模型似然度的计算 . . . . . . . . . . . . . . . . . . . . 24
3.3.4 计算似然度的高效算法 . . . . . . . . . . . . . . . . . . . . . . . . 26
3.3.5 前向与后向递归式的证明 . . . . . . . . . . . . . . . . . . . . . . 27
3.4 期望最大化算法及其在学习 HMM 参数中的应用 . . . . . . . . . . . . . 28
3.4.1 期望最大化算法介绍 . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.4.2 使用 EM 算法来学习 HMM 参数——Baum-Welch 算法 . . . . . . 30
3.5 用于解码 HMM 状态序列的维特比算法 . . . . . . . . . . . . . . . . . . . 34
3.5.1 动态规划和维特比算法 . . . . . . . . . . . . . . . . . . . . . . . . 34
3.5.2 用于解码 HMM 状态的动态规划算法 . . . . . . . . . . . . . . . . 35
3.6 隐马尔可夫模型和生成语音识别模型的变体 . . . . . . . . . . . . . . . . 37
3.6.1 用于语音识别的 GMM-HMM 模型 . . . . . . . . . . . . . . . . . 38
3.6.2 基于轨迹和隐藏动态模型的语音建模和识别 . . . . . . . . . . . . 39
3.6.3 使用生成模型 HMM 及其变体解决语音识别问题 . . . . . . . . . 40
第二部分 深度神经网络 43
第 4 章 深度神经网络 45
4.1 深度神经网络框架 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.2 使用误差反向传播来进行参数训练 . . . . . . . . . . . . . . . . . . . . . 48
4.2.1 训练准则 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.2.2 训练算法 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.3 实际应用 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.3.1 数据预处理 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.3.2 模型初始化 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.3.3 权重衰减 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.3.4 丢弃法 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.3.5 批量块大小的选择 . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.3.6 取样随机化 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.3.7 惯性系数 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.3.8 学习率和停止准则 . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.3.9 网络结构 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.3.10 可复现性与可重启性 . . . . . . . . . . . . . . . . . . . . . . . . . 62
第 5 章 高级模型初始化技术 65
5.1 受限玻尔兹曼机 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.1.1 受限玻尔兹曼机的属性 . . . . . . . . . . . . . . . . . . . . . . . . 67
5.1.2 受限玻尔兹曼机参数学习 . . . . . . . . . . . . . . . . . . . . . . 70
5.2 深度置信网络预训练 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.3 降噪自动编码器预训练 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
5.4 鉴别性预训练 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
5.5 混合预训练 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
5.6 采用丢弃法的预训练 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
第三部分 语音识别中的深度神经网络–隐马尔可夫混合模型 81
第 6 章 深度神经网络–隐马尔可夫模型混合系统 83
6.1 DNN-HMM 混合系统 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
6.1.1 结构 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
6.1.2 用 CD-DNN-HMM 解码 . . . . . . . . . . . . . . . . . . . . . . . . 85
6.1.3 CD-DNN-HMM 训练过程 . . . . . . . . . . . . . . . . . . . . . . . 86
6.1.4 上下文窗口的影响 . . . . . . . . . . . . . . . . . . . . . . . . . . 88
6.2 CD-DNN-HMM 的关键模块及分析 . . . . . . . . . . . . . . . . . . . . . 90
6.2.1 进行比较和分析的数据集和实验 . . . . . . . . . . . . . . . . . . 90
6.2.2 对单音素或者三音素的状态进行建模 . . . . . . . . . . . . . . . . 92
6.2.3 越深越好 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
6.2.4 利用相邻的语音帧 . . . . . . . . . . . . . . . . . . . . . . . . . . 94
6.2.5 预训练 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
6.2.6 训练数据的标注质量的影响 . . . . . . . . . . . . . . . . . . . . . 95
6.2.7 调整转移概率 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
6.3 基于 KL 距离的隐马尔可夫模型 . . . . . . . . . . . . . . . . . . . . . . . 96
第 7 章 训练和解码的加速 99
7.1 训练加速 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
7.1.1 使用多 GPU 流水线反向传播 . . . . . . . . . . . . . . . . . . . . 100
7.1.2 异步随机梯度下降 . . . . . . . . . . . . . . . . . . . . . . . . . . 103
7.1.3 增广拉格朗日算法及乘子方向交替算法 . . . . . . . . . . . . . . 106
7.1.4 减小模型规模 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
7.1.5 其他方法 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
7.2 加速解码 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
7.2.1 并行计算 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
7.2.2 稀疏网络 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
7.2.3 低秩近似 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
7.2.4 用大尺寸 DNN 训练小尺寸 DNN . . . . . . . . . . . . . . . . . . 114
7.2.5 多帧 DNN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
第 8 章 深度神经网络序列鉴别性训练 117
8.1 序列鉴别性训练准则 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
8.1.1 最大相互信息 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
8.1.2 增强型 MMI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
8.1.3 最小音素错误/状态级最小贝叶斯风险 . . . . . . . . . . . . . . . 120
8.1.4 统一的公式 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
8.2 具体实现中的考量 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
8.2.1 词图产生 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
8.2.2 词图补偿 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
8.2.3 帧平滑 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
8.2.4 学习率调整 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
8.2.5 训练准则选择 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
8.2.6 其他考量 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
8.3 噪声对比估计 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
8.3.1 将概率密度估计问题转换为二分类设计问题 . . . . . . . . . . . . 127
8.3.2 拓展到未归一化的模型 . . . . . . . . . . . . . . . . . . . . . . . . 129
8.3.3 在深度学习网络训练中应用噪声对比估计算法 . . . . . . . . . . 130
第四部分 深度神经网络中的特征表示学习 133
第 9 章 深度神经网络中的特征表示学习 135
9.1 特征和分类器的联合学习 . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
9.2 特征层级 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
9.3 使用随意输入特征的灵活性 . . . . . . . . . . . . . . . . . . . . . . . . . 140
9.4 特征的鲁棒性 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
9.4.1 对说话人变化的鲁棒性 . . . . . . . . . . . . . . . . . . . . . . . . 141
9.4.2 对环境变化的鲁棒性 . . . . . . . . . . . . . . . . . . . . . . . . . 142
9.5 对环境的鲁棒性 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
9.5.1 对噪声的鲁棒性 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
9.5.2 对语速变化的鲁棒性 . . . . . . . . . . . . . . . . . . . . . . . . . 147
9.6 缺乏严重信号失真情况下的推广能力 . . . . . . . . . . . . . . . . . . . . 148
第 10 章 深度神经网络和混合高斯模型的融合 151
10.1 在 GMM-HMM 系统中使用由 DNN 衍生的特征 . . . . . . . . . . . . . . 151
10.1.1 使用 Tandem 和瓶颈特征的 GMM-HMM 模型 . . . . . . . . . . . 151
10.1.2 DNN-HMM 混合系统与采用深度特征的 GMM-HMM 系统的比较 154
10.2 识别结果融合技术 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
10.2.1 识别错误票选降低技术( ROVER) . . . . . . . . . . . . . . . . . 157
10.2.2 分段条件随机场( SCARF) . . . . . . . . . . . . . . . . . . . . . 159
10.2.3 最小贝叶斯风险词图融合 . . . . . . . . . . . . . . . . . . . . . . 160
10.3 帧级别的声学分数融合 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
10.4 多流语音识别 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
第 11 章 深度神经网络的自适应技术 165
11.1 深度神经网络中的自适应问题 . . . . . . . . . . . . . . . . . . . . . . . . 165
11.2 线性变换 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
11.2.1 线性输入网络 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
11.2.2 线性输出网络 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
11.3 线性隐层网络 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
11.4 保守训练 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
11.4.1 L 2 正则项 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
11.4.2 KL 距离正则项 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
11.4.3 减少每个说话人的模型开销 . . . . . . . . . . . . . . . . . . . . . 173
11.5 子空间方法 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
11.5.1 通过主成分分析构建子空间 . . . . . . . . . . . . . . . . . . . . . 175
11.5.2 噪声感知、说话人感知及设备感知训练 . . . . . . . . . . . . . . 176
11.5.3 张量 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
11.6 DNN 说话人自适应的效果 . . . . . . . . . . . . . . . . . . . . . . . . . . 181
11.6.1 基于 KL 距离的正则化方法 . . . . . . . . . . . . . . . . . . . . . 181
11.6.2 说话人感知训练 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
第五部分 先进的深度学习模型 185
第 12 章 深度神经网络中的表征共享和迁移 187
12.1 多任务和迁移学习 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
12.1.1 多任务学习 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
12.1.2 迁移学习 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
12.2 多语言和跨语言语音识别 . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
12.2.1 基于 Tandem 或瓶颈特征的跨语言语音识别 . . . . . . . . . . . . 190
12.2.2 共享隐层的多语言深度神经网络 . . . . . . . . . . . . . . . . . . 191
12.2.3 跨语言模型迁移 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
12.3 语音识别中深度神经网络的多目标学习 . . . . . . . . . . . . . . . . . . . 197
12.3.1 使用多任务学习的鲁棒语音识别 . . . . . . . . . . . . . . . . . . 197
12.3.2 使用多任务学习改善音素识别 . . . . . . . . . . . . . . . . . . . . 198
12.3.3 同时识别音素和字素( graphemes) . . . . . . . . . . . . . . . . . 199
12.4 使用视听信息的鲁棒语音识别 . . . . . . . . . . . . . . . . . . . . . . . . 199
第 13 章 循环神经网络及相关模型 201
13.1 介绍 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
13.2 基本循环神经网络中的状态-空间公式 . . . . . . . . . . . . . . . . . . . . 203
13.3 沿时反向传播学习算法 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204
13.3.1 最小化目标函数 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
13.3.2 误差项的递归计算 . . . . . . . . . . . . . . . . . . . . . . . . . . 205
13.3.3 循环神经网络权重的更新 . . . . . . . . . . . . . . . . . . . . . . 206
13.4 一种用于学习循环神经网络的原始对偶技术 . . . . . . . . . . . . . . . . 208
13.4.1 循环神经网络学习的难点 . . . . . . . . . . . . . . . . . . . . . . 208
13.4.2 回声状态( Echo-State)性质及其充分条件 . . . . . . . . . . . . . 208
13.4.3 将循环神经网络的学习转化为带约束的优化问题 . . . . . . . . . 209
13.4.4 一种用于学习 RNN 的原始对偶方法 . . . . . . . . . . . . . . . . 210
13.5 结合长短时记忆单元( LSTM)的循环神经网络 . . . . . . . . . . . . . . 212
13.5.1 动机与应用 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212
13.5.2 长短时记忆单元的神经元架构 . . . . . . . . . . . . . . . . . . . . 213
13.5.3 LSTM-RNN 的训练 . . . . . . . . . . . . . . . . . . . . . . . . . . 214
13.6 循环神经网络的对比分析 . . . . . . . . . . . . . . . . . . . . . . . . . . . 214
13.6.1 信息流方向的对比:自上而下还是自下而上 . . . . . . . . . . . . 215
13.6.2 信息表征的对比:集中式还是分布式 . . . . . . . . . . . . . . . . 217
13.6.3 解释能力的对比:隐含层推断还是端到端学习 . . . . . . . . . . 218
13.6.4 参数化方式的对比:吝啬参数集合还是大规模参数矩阵 . . . . . 218
13.6.5 模型学习方法的对比:变分推理还是梯度下降 . . . . . . . . . . 219
13.6.6 识别正确率的比较 . . . . . . . . . . . . . . . . . . . . . . . . . . 220
13.7 讨论 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
第 14 章 计算型网络 223
14.1 计算型网络 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
14.2 前向计算 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224
14.3 模型训练 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
14.4 典型的计算节点 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231
14.4.1 无操作数的计算节点 . . . . . . . . . . . . . . . . . . . . . . . . . 232
14.4.2 含一个操作数的计算节点 . . . . . . . . . . . . . . . . . . . . . . 232
14.4.3 含两个操作数的计算节点 . . . . . . . . . . . . . . . . . . . . . . 237
14.4.4 用来计算统计量的计算节点类型 . . . . . . . . . . . . . . . . . . 244
14.5 卷积神经网络 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245