diff --git a/mokapot/brew.py b/mokapot/brew.py index ae8b2587..86e06b30 100644 --- a/mokapot/brew.py +++ b/mokapot/brew.py @@ -181,13 +181,13 @@ def brew(psms, model=None, test_fdr=0.01, folds=3, max_workers=1, rng=None): descs = [True] * len(psms) if using_best_feat: - logging.warning( + LOGGER.warning( "Learned model did not improve over the best feature. " "Now scoring by the best feature for each collection " "of PSMs." ) elif reset: - logging.warning( + LOGGER.warning( "Learned model did not improve upon the pretrained " "input model. Now re-scoring each collection of PSMs " "using the original model." diff --git a/mokapot/model.py b/mokapot/model.py index da50812a..7847c9a0 100644 --- a/mokapot/model.py +++ b/mokapot/model.py @@ -540,7 +540,7 @@ def load_model(model_file): # Try a percolator model first: try: weights = pd.read_csv(model_file, sep="\t", nrows=2).loc[1, :] - logging.info("Loading the Percolator model.") + LOGGER.info("Loading the Percolator model.") weight_cols = [c for c in weights.index if c != "m0"] model = Model(estimator=LinearSVC(), scaler="as-is") @@ -553,7 +553,7 @@ def load_model(model_file): # Then try loading it with pickle: except (KeyError, UnicodeDecodeError): - logging.info("Loading mokapot model.") + LOGGER.info("Loading mokapot model.") with open(model_file, "rb") as mod_in: model = pickle.load(mod_in)