-
Notifications
You must be signed in to change notification settings - Fork 17
/
train.py
363 lines (309 loc) · 15.2 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
import os
import argparse
import json
import torch
import numpy as np
from torch.nn.functional import threshold, unfold
from dataloaders.HSI_datasets import *
from utils.logger import Logger
import torch.utils.data as data
from utils.helpers import initialize_weights, initialize_weights_new, to_variable, make_patches
import torch.optim as optim
import torch.nn as nn
from torch.autograd import Variable
from torch.utils.tensorboard import SummaryWriter
from models.models import MODELS
from utils.metrics import *
import shutil
import torchvision
from torch.distributions.uniform import Uniform
import sys
import kornia
from kornia import laplacian, sobel
from scipy.io import savemat
import torch.nn.functional as F
from utils.vgg_perceptual_loss import VGGPerceptualLoss, VGG19
from utils.spatial_loss import Spatial_Loss
def ensure_dir(file_path):
directory = os.path.dirname(file_path)
if not os.path.exists(directory):
os.makedirs(directory)
__dataset__ = {"pavia_dataset": pavia_dataset, "botswana_dataset": botswana_dataset, "chikusei_dataset": chikusei_dataset, "botswana4_dataset": botswana4_dataset}
# Parse the arguments
parser = argparse.ArgumentParser(description='PyTorch Training')
parser.add_argument('-c', '--config', default='configs/config_PANNET.json',type=str,
help='Path to the config file')
parser.add_argument('-r', '--resume', default=None, type=str,
help='Path to the .pth model checkpoint to resume training')
parser.add_argument('-d', '--device', default=None, type=str,
help='indices of GPUs to enable (default: all)')
parser.add_argument('--local', action='store_true', default=False)
args = parser.parse_args()
# Loading the config file
config = json.load(open(args.config))
torch.backends.cudnn.benchmark = True
# Set seeds.
torch.manual_seed(7)
# Setting number of GPUS available for training.
num_gpus = torch.cuda.device_count()
# Selecting the model.
model = MODELS[config["model"]](config)
print(f'\n{model}\n')
# Sending model to GPU device.
if num_gpus > 1:
print("Training with multiple GPUs ({})".format(num_gpus))
model = nn.DataParallel(model).cuda()
else:
print("Single Cuda Node is avaiable")
model.cuda()
# Setting up training and testing dataloaderes.
print("Training with dataset => {}".format(config["train_dataset"]))
train_loader = data.DataLoader(
__dataset__[config["train_dataset"]](
config,
is_train=True,
want_DHP_MS_HR=config["is_DHP_MS"],
),
batch_size=config["train_batch_size"],
num_workers=config["num_workers"],
shuffle=True,
pin_memory=False,
)
test_loader = data.DataLoader(
__dataset__[config["train_dataset"]](
config,
is_train=False,
want_DHP_MS_HR=config["is_DHP_MS"],
),
batch_size=config["val_batch_size"],
num_workers=config["num_workers"],
shuffle=True,
pin_memory=False,
)
# Initialization of hyperparameters.
start_epoch = 1
total_epochs = config["trainer"]["total_epochs"]
# Setting up optimizer.
if config["optimizer"]["type"] == "SGD":
optimizer = optim.SGD(
model.parameters(),
lr=config["optimizer"]["args"]["lr"],
momentum = config["optimizer"]["args"]["momentum"],
weight_decay= config["optimizer"]["args"]["weight_decay"]
)
elif config["optimizer"]["type"] == "ADAM":
optimizer = optim.Adam(
model.parameters(),
lr=config["optimizer"]["args"]["lr"],
weight_decay= config["optimizer"]["args"]["weight_decay"]
)
else:
exit("Undefined optimizer type")
# Learning rate sheduler.
scheduler = optim.lr_scheduler.StepLR( optimizer,
step_size=config["optimizer"]["step_size"],
gamma=config["optimizer"]["gamma"])
# Resume...
if args.resume is not None:
print("Loading from existing FCN and copying weights to continue....")
checkpoint = torch.load(args.resume)
model.load_state_dict(checkpoint, strict=False)
else:
# initialize_weights(model)
initialize_weights_new(model)
# Setting up loss functions.
if config[config["train_dataset"]]["loss_type"] == "L1":
criterion = torch.nn.L1Loss()
HF_loss = torch.nn.L1Loss()
elif config[config["train_dataset"]]["loss_type"] == "MSE":
criterion = torch.nn.MSELoss()
HF_loss = torch.nn.MSELoss()
else:
exit("Undefined loss type")
if config[config["train_dataset"]]["VGG_Loss"]:
vggnet = VGG19()
vggnet = torch.nn.DataParallel(vggnet).cuda()
if config[config["train_dataset"]]["Spatial_Loss"]:
Spatial_loss = Spatial_Loss(in_channels = config[config["train_dataset"]]["spectral_bands"]).cuda()
# Training epoch.
def train(epoch):
train_loss = 0.0
model.train()
optimizer.zero_grad()
for i, data in enumerate(train_loader, 0):
# Reading data.
_, MS_image, PAN_image, reference = data
# Making Smaller Patches for the training
if config["trainer"]["is_small_patch_train"]:
MS_image,_ = make_patches(MS_image, patch_size=config["trainer"]["patch_size"])
PAN_image,_ = make_patches(PAN_image, patch_size=config["trainer"]["patch_size"])
reference,_ = make_patches(reference, patch_size=config["trainer"]["patch_size"])
# Taking model outputs ...
MS_image = Variable(MS_image.float().cuda())
PAN_image = Variable(PAN_image.float().cuda())
out = model(MS_image, PAN_image)
outputs = out["pred"]
######### Computing loss #########
# Normal L1 loss
if config[config["train_dataset"]]["Normalized_L1"]:
max_ref = torch.amax(reference, dim=(2,3)).unsqueeze(2).unsqueeze(3).expand_as(reference).cuda()
loss = criterion(outputs/max_ref, to_variable(reference)/max_ref)
else:
loss = criterion(outputs, to_variable(reference))
# VGG Perceptual Loss
if config[config["train_dataset"]]["VGG_Loss"]:
predicted_RGB = torch.cat((torch.mean(outputs[:, 0:config[config["train_dataset"]]["G"], :, :], 1).unsqueeze(1),
torch.mean(outputs[:, config[config["train_dataset"]]["B"]:config[config["train_dataset"]]["R"], :, :], 1).unsqueeze(1),
torch.mean(outputs[:, config[config["train_dataset"]]["G"]:config[config["train_dataset"]]["spectral_bands"], :, :], 1).unsqueeze(1)), 1)
target_RGB = torch.cat((torch.mean(to_variable(reference)[:, 0:config[config["train_dataset"]]["G"], :, :], 1).unsqueeze(1),
torch.mean(to_variable(reference)[:, config[config["train_dataset"]]["B"]:config[config["train_dataset"]]["R"], :, :], 1).unsqueeze(1),
torch.mean(to_variable(reference)[:, config[config["train_dataset"]]["G"]:config[config["train_dataset"]]["spectral_bands"], :, :], 1).unsqueeze(1)), 1)
VGG_loss = VGGPerceptualLoss(predicted_RGB, target_RGB, vggnet)
loss += config[config["train_dataset"]]["VGG_Loss_F"]*VGG_loss
# Transfer Perceptual Loss
if config[config["train_dataset"]]["Transfer_Periferal_Loss"]:
loss += config[config["train_dataset"]]["Transfer_Periferal_Loss_F"]*out["tp_loss"]
# Spatial loss
if config[config["train_dataset"]]["Spatial_Loss"]:
loss += config[config["train_dataset"]]["Spatial_Loss_F"]*Spatial_loss(to_variable(reference), outputs)
# Spatial loss
if config[config["train_dataset"]]["multi_scale_loss"]:
loss += config[config["train_dataset"]]["multi_scale_loss_F"]*criterion(to_variable(reference), out["x13"]) + 2*config[config["train_dataset"]]["multi_scale_loss_F"]*criterion(to_variable(reference), out["x23"])
torch.autograd.backward(loss)
if i % config["trainer"]["iter_size"] == 0 or i == len(train_loader) - 1:
optimizer.step()
optimizer.zero_grad()
writer.add_scalar('Loss/train', loss, epoch)
# Testing epoch.
def test(epoch):
test_loss = 0.0
cc = 0.0
sam = 0.0
rmse = 0.0
ergas = 0.0
psnr = 0.0
val_outputs = {}
model.eval()
pred_dic = {}
with torch.no_grad():
for i, data in enumerate(test_loader, 0):
image_dict, MS_image, PAN_image, reference = data
# Generating small patches
if config["trainer"]["is_small_patch_train"]:
MS_image, unfold_shape = make_patches(MS_image, patch_size=config["trainer"]["patch_size"])
PAN_image, _ = make_patches(PAN_image, patch_size=config["trainer"]["patch_size"])
reference, _ = make_patches(reference, patch_size=config["trainer"]["patch_size"])
# Inputs and references...
MS_image = MS_image.float().cuda()
PAN_image = PAN_image.float().cuda()
reference = reference.float().cuda()
# Taking model output
out = model(MS_image, PAN_image)
outputs = out["pred"]
# Computing validation loss
loss = criterion(outputs, reference)
test_loss += loss.item()
# Scalling
outputs[outputs<0] = 0.0
outputs[outputs>1.0] = 1.0
outputs = torch.round(outputs*config[config["train_dataset"]]["max_value"])
pred_dic.update({image_dict["imgs"][0].split("/")[-1][:-4]+"_pred": torch.squeeze(outputs).permute(1,2,0).cpu().numpy()})
reference = torch.round(reference.detach()*config[config["train_dataset"]]["max_value"])
### Computing performance metrics ###
# Cross-correlation
cc += cross_correlation(outputs, reference)
# SAM
sam += SAM(outputs, reference)
# RMSE
rmse += RMSE(outputs/torch.max(reference), reference/torch.max(reference))
# ERGAS
beta = torch.tensor(config[config["train_dataset"]]["HR_size"]/config[config["train_dataset"]]["LR_size"]).cuda()
ergas += ERGAS(outputs, reference, beta)
# PSNR
psnr += PSNR(outputs, reference)
# Taking average of performance metrics over test set
cc /= len(test_loader)
sam /= len(test_loader)
rmse /= len(test_loader)
ergas /= len(test_loader)
psnr /= len(test_loader)
# Writing test results to tensorboard
writer.add_scalar('Loss/test', test_loss, epoch)
writer.add_scalar('Test_Metrics/CC', cc, epoch)
writer.add_scalar('Test_Metrics/SAM', sam, epoch)
writer.add_scalar('Test_Metrics/RMSE', rmse, epoch)
writer.add_scalar('Test_Metrics/ERGAS', ergas, epoch)
writer.add_scalar('Test_Metrics/PSNR', psnr, epoch)
# Images to tensorboard
# Regenerating the final image
if config["trainer"]["is_small_patch_train"]:
outputs = outputs.view(unfold_shape).permute(0, 1, 4, 2, 5, 3, 6).contiguous()
outputs = outputs.contiguous().view(config["val_batch_size"],
config[config["train_dataset"]]["spectral_bands"],
config[config["train_dataset"]]["HR_size"],
config[config["train_dataset"]]["HR_size"])
reference = reference.view(unfold_shape).permute(0, 1, 4, 2, 5, 3, 6).contiguous()
reference = reference.contiguous().view(config["val_batch_size"],
config[config["train_dataset"]]["spectral_bands"],
config[config["train_dataset"]]["HR_size"],
config[config["train_dataset"]]["HR_size"])
MS_image = MS_image.view(unfold_shape).permute(0, 1, 4, 2, 5, 3, 6).contiguous()
MS_image = MS_image.contiguous().view(config["val_batch_size"],
config[config["train_dataset"]]["spectral_bands"],
config[config["train_dataset"]]["HR_size"],
config[config["train_dataset"]]["HR_size"])
#Normalizing the images
outputs = outputs/torch.max(reference)
reference = reference/torch.max(reference)
MS_image = MS_image/torch.max(reference)
if config["model"]=="HyperPNN" or config["is_DHP_MS"]==False:
MS_image = F.interpolate(MS_image, scale_factor=(config[config["train_dataset"]]["factor"],config[config["train_dataset"]]["factor"]),mode ='bilinear')
ms = torch.unsqueeze(MS_image.view(-1, MS_image.shape[-2], MS_image.shape[-1]), 1)
pred = torch.unsqueeze(outputs.view(-1, outputs.shape[-2], outputs.shape[-1]), 1)
ref = torch.unsqueeze(reference.view(-1, reference.shape[-2], reference.shape[-1]), 1)
imgs = torch.zeros(5*pred.shape[0], pred.shape[1], pred.shape[2], pred.shape[3])
for i in range(pred.shape[0]):
imgs[5*i] = ms[i]
imgs[5*i+1] = torch.abs(ms[i]-pred[i])/torch.max(torch.abs(ms[i]-pred[i]))
imgs[5*i+2] = pred[i]
imgs[5*i+3] = ref[i]
imgs[5*i+4] = torch.abs(ref[i]-ms[i])/torch.max(torch.abs(ref[i]-ms[i]))
imgs = torchvision.utils.make_grid(imgs, nrow=5)
writer.add_image('Images', imgs, epoch)
#Return Outputs
metrics = { "loss": float(test_loss),
"cc": float(cc),
"sam": float(sam),
"rmse": float(rmse),
"ergas": float(ergas),
"psnr": float(psnr)}
return image_dict, pred_dic, metrics
# Setting up tensorboard and copy .json file to save directory.
PATH = "./"+config["experim_name"]+"/"+config["train_dataset"]+"/"+"N_modules("+str(config["N_modules"])+")"
ensure_dir(PATH+"/")
writer = SummaryWriter(log_dir=PATH)
shutil.copy2(args.config, PATH)
# Print model to text file
original_stdout = sys.stdout
with open(PATH+"/"+"model_summary.txt", 'w+') as f:
sys.stdout = f
print(f'\n{model}\n')
sys.stdout = original_stdout
# Main loop.
best_psnr =0.0
for epoch in range(start_epoch, total_epochs):
scheduler.step(epoch)
print("\nTraining Epoch: %d" % epoch)
train(epoch)
if epoch % config["trainer"]["test_freq"] == 0:
print("\nTesting Epoch: %d" % epoch)
image_dict, pred_dic, metrics=test(epoch)
#Saving the best model
if metrics["psnr"] > best_psnr:
best_psnr = metrics["psnr"]
#Saving best performance metrics
torch.save(model.state_dict(), PATH+"/"+"best_model.pth")
with open(PATH+"/"+"best_metrics.json", "w+") as outfile:
json.dump(metrics, outfile)
#Saving best prediction
savemat(PATH+"/"+ "final_prediction.mat", pred_dic)