-
Notifications
You must be signed in to change notification settings - Fork 46
/
consensus.py
executable file
·447 lines (414 loc) · 17.4 KB
/
consensus.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
#!/usr/bin/env python
import pystan
import argparse
import vcf
parser = argparse.ArgumentParser(description="consensus genotype calling and ambient RNA estimation")
parser.add_argument("-c","--clusters",required=True,help="tsv cluster file from the troublet output")
parser.add_argument("-a","--alt_matrix",required=True,help="alt matrix file")
parser.add_argument("-r","--ref_matrix",required=True,help="ref matrix file")
parser.add_argument("-p","--ploidy",required=False, help="ploidy, must be 1 or 2, defaults to 2")
parser.add_argument("--soup_out",required=True, help="soup output")
parser.add_argument("--vcf_out",required=True, help="vcf output")
parser.add_argument("--output_dir", required=True, help = "output directory")
#parser.add_argument("-d","--doublets",required=True, help="doublet calls")
parser.add_argument("-v","--vcf",required=True,help="vcf file from which alt and ref matrix were created")
args = parser.parse_args()
dirname = args.output_dir
def myopen(fname): return open(fname, 'rb') if fname.endswith('.gz') else open(fname)
cell_genotype_consensus = """
data {
int<lower=0> cells; // number of cells
int<lower=0> loci; // number of loci
int<lower=0> msoup; //number of loci used to estimate soup
int<lower=0> k; // number of clusters
int<lower=1,upper=2> ploidy;
int cluster_allele_counts[loci, k, 2];
int cluster_allele_counts_soup[msoup,k,2];
int cluster_num_cells[k];
real average_allele_expression[loci, 2];
real average_allele_expression_soup[msoup,2];
}
transformed data {
real<upper=0> neg_log_3;
real<upper=0> fp_prior;
real<upper=0> tp_prior;
real<upper=0> logp_base_correct;
neg_log_3 = -log(ploidy+1);
tp_prior = log(0.9);
fp_prior = log(0.1);
logp_base_correct = log(0.99);
}
parameters {
real<lower=0.0, upper=1.0> p_soup;
}
model {
real stuff[ploidy+1];
real p_hom_ref;
real p_hom_alt;
real p_het_ref;
real truth;
real p_err;
real err;
real hom_ref;
real hom_alt;
real het;
real lse;
int depth;
p_soup ~ beta(2,8);
for (locus in 1:msoup){
err = 0;
truth = 0;
for (cluster in 1:k) {
depth = cluster_allele_counts_soup[locus][cluster][1] + cluster_allele_counts_soup[locus][cluster][2];
if (depth == 0) {
continue;
}
p_hom_ref = (1.0 - p_soup) * 1.0 + p_soup * average_allele_expression_soup[locus][1]/(average_allele_expression_soup[locus][1] + average_allele_expression_soup[locus][2]);
p_hom_alt = (1.0 - p_soup) * 1.0 + p_soup * average_allele_expression_soup[locus][2]/(average_allele_expression_soup[locus][1] + average_allele_expression_soup[locus][2]);
p_het_ref = (1.0 - p_soup) * 0.5 + p_soup * average_allele_expression_soup[locus][1]/(average_allele_expression_soup[locus][1] + average_allele_expression_soup[locus][2]);
p_err = average_allele_expression_soup[locus][1]/(average_allele_expression_soup[locus][1] + average_allele_expression_soup[locus][2]);
hom_ref = binomial_lpmf(cluster_allele_counts_soup[locus][cluster][1] | depth, p_hom_ref);
hom_alt = binomial_lpmf(cluster_allele_counts_soup[locus][cluster][2] | depth, p_hom_alt);
het = binomial_lpmf(cluster_allele_counts_soup[locus][cluster][1] | depth, p_het_ref);
err += binomial_lpmf(cluster_allele_counts_soup[locus][cluster][1] | depth, p_err);
stuff[1] = hom_ref + neg_log_3;
stuff[2] = hom_alt + neg_log_3;
//stuff2 += err + fp_prior;
if (ploidy == 2) {
stuff[3] = het + neg_log_3;
}
truth += log_sum_exp(stuff);
}
target += log_mix(0.5, truth, err);
}
}
generated quantities {
real genotypes[loci,k,ploidy+1];
real stuff;
real p_hom_ref;
real truth[loci];
real p_hom_alt;
real p_het_ref;
real p_err;
real err[loci];
real hom_ref;
real hom_alt;
real het;
real lse;
int depth;
for (locus in 1:loci){
err[locus] = 0;
truth[locus] = 0;
for (cluster in 1:k) {
depth = cluster_allele_counts[locus][cluster][1] + cluster_allele_counts[locus][cluster][2];
if (depth == 0) {
genotypes[locus][cluster][1] = neg_log_3;
genotypes[locus][cluster][2] = neg_log_3;
if (ploidy == 2) {
genotypes[locus][cluster][3] = neg_log_3;
}
truth[locus] += log_sum_exp(genotypes[locus][cluster]);
continue;
}
p_hom_ref = (1.0 - p_soup) * 1.0 + p_soup * average_allele_expression[locus][1]/(average_allele_expression[locus][1] + average_allele_expression[locus][2]);
p_hom_alt = (1.0 - p_soup) * 1.0 + p_soup * average_allele_expression[locus][2]/(average_allele_expression[locus][1] + average_allele_expression[locus][2]);
p_het_ref = (1.0 - p_soup) * 0.5 + p_soup * average_allele_expression[locus][1]/(average_allele_expression[locus][1] + average_allele_expression[locus][2]);
p_hom_ref = fmax(.01,fmin(.99, p_hom_ref));
p_hom_alt = fmax(.01,fmin(.99, p_hom_alt));
p_het_ref = fmax(.01,fmin(.99, p_het_ref));
p_err = average_allele_expression[locus][1]/(average_allele_expression[locus][1] + average_allele_expression[locus][2]);
p_err = fmax(.01,fmin(.99,p_err));
hom_ref = binomial_lpmf(cluster_allele_counts[locus][cluster][1] | depth, p_hom_ref);
hom_alt = binomial_lpmf(cluster_allele_counts[locus][cluster][2] | depth, p_hom_alt);
het = binomial_lpmf(cluster_allele_counts[locus][cluster][1] | depth, p_het_ref);
err[locus] += neg_log_3 + depth*logp_base_correct + binomial_lpmf(cluster_allele_counts[locus][cluster][1] | depth, p_err);
genotypes[locus][cluster][1] = hom_ref + neg_log_3;
genotypes[locus][cluster][2] = hom_alt + neg_log_3;
if (ploidy == 2) {
genotypes[locus][cluster][3] = het + neg_log_3;
}
truth[locus] += log_sum_exp(genotypes[locus][cluster]);
}
truth[locus] += tp_prior;
err[locus] += fp_prior;
}
}
"""
if args.ploidy:
assert(int(args.ploidy) == 1 or int(args.ploidy)==2)
else:
args.ploidy = 2
import os
import pickle
#sm = pickle.load(open(os.path.realpath(__file__)[0:-12]+"stan_consensus.pickle",'rb'))
sm = pystan.StanModel(model_code=cell_genotype_consensus)
with open("stan_consensus.pickle",'wb') as model:
pickle.dump(sm, model)
from scipy.special import logsumexp
vcftemplate = vcf.Reader(myopen(args.vcf))
potential_RNAedits = set()
excluded = 0
for (index, rec) in enumerate(vcftemplate):
if (rec.REF == "T" and str(rec.ALT[0]) == "C") or (rec.REF == "A" and str(rec.ALT[0]) == "G"):
potential_RNAedits.add(index+1)
excluded += 1
print(str(excluded) +" excluded for potential RNA editing")
#print("got here")
doublets = set()
with open(args.clusters) as dubs:
dubs.readline() # get rid of header
for (index, line) in enumerate(dubs):
if "doublet" in line or "unassigned" in line:
doublets.add(index)
print(str(len(doublets))+ " doublets excluded from genotype and ambient RNA estimation")
import subprocess
cell_clusters = {}
cluster_cells = {}
max_cluster = -1
total_cells = 0
cell_size = {}
with open(args.clusters) as assignments:
assignments.readline()
for (index, line) in enumerate(assignments):
if index in doublets:
continue
tokens = line.strip().split()
cell = tokens[0]
# doublets.add(index)
# continue
total_cells += 1
cluster = int(tokens[2])
cell_clusters[index] = cluster
cluster_cells.setdefault(cluster,[])
cluster_cells[cluster].append(index)
max_cluster = max(max_cluster,cluster)
cluster_counts = [0]*(max_cluster+1)
for (cell, cluster) in cell_clusters.items():
cluster_counts[cluster] += 1
cell_index = {}
total_lost = 0
loci_counts = {}
loci_full_counts = {}
cell_counts = {}
with open(args.ref_matrix) as ref:
with open(args.alt_matrix) as alt:
alt.readline()
alt.readline()
tokens = alt.readline().strip().split()
cells = int(tokens[1])
total_loci = int(tokens[0])
ref.readline()
ref.readline()
ref.readline()
for (refline, altline) in zip(ref,alt):
reftokens = refline.strip().split()
alttokens = altline.strip().split()
locus = int(reftokens[0])
cell = int(reftokens[1])
if cell - 1 in doublets:
continue
cell_counts.setdefault(cell,{})
cell_counts[cell].setdefault(locus,[0,0])
loci_counts.setdefault(locus,[0,0])
refcount = int(reftokens[2])
altcount = int(alttokens[2])
cell_counts[cell][locus][0] = refcount
cell_counts[cell][locus][1] = altcount
loci_counts.setdefault(locus,[0,0])
loci_full_counts.setdefault(locus,[0,0])
loci_full_counts[locus][0] += refcount
loci_full_counts[locus][1] += altcount
if refcount > 0:
loci_counts[locus][0] += 1
if altcount > 0:
loci_counts[locus][1] += 1
total_cells = cells
loci_for_soup = {}
index = 0
min_value = 20
excluded = 0
for (locus, counts) in sorted(loci_full_counts.items()):
if counts[0] > min_value and counts[1] > min_value:
if not(locus in potential_RNAedits):
loci_for_soup[locus-1] = index
index += 1
else:
excluded += 1
print(str(excluded)+ " not used for soup calculation due to possible RNA edit")
min_ref = 0
min_alt = 1
used_loci = []
locus_index = {}
index = 0
for (locus, counts) in loci_counts.items():
if counts[0] >= min_ref and counts[1] >= min_alt:
used_loci.append(locus-1)
locus_index[locus-1] = index
index += 1
used_loci = sorted(used_loci)
used_loci_indices = {locus:i for (i, locus) in enumerate(used_loci)}
total_loci = len(used_loci)
stats_cell_loci = []
stats_cell_counts = []
stats_locus_cells = {}
for (cell, counts) in cell_counts.items():
stats_cell_loci.append(0)
stats_cell_counts.append(0)
for (locus, count) in counts.items():
if (locus-1) in locus_index:
stats_locus_cells.setdefault(locus,[0,0])
if count[0] > 0:
stats_locus_cells[locus][0] += 1
if count[1] > 0:
stats_locus_cells[locus][1] += 1
stats_cell_loci[-1] += 1
stats_cell_counts[-1] += (count[0]+count[1])
#with open("cell_loci.csv",'w') as cl:
# cl.write("loci_per_cell\n")
# for loci in stats_cell_loci:
# cl.write(str(loci)+"\n")
#with open("loci_cells.csv",'w') as cl:
# cl.write("cells_per_locus_ref,cells_per_locus_alt\n")
# for (locus, cells) in stats_locus_cells.items():
# cl.write(str(cells[0])+","+str(cells[1])+"\n")
cluster_allele_counts = [[[0,0] for c in range(max_cluster+1)] for x in range(total_loci)]
cluster_allele_counts_soup = [[[0,0] for c in range(max_cluster+1)] for x in range(len(loci_for_soup))]
average_allele_expression_soup = [[0,0] for c in range(len(loci_for_soup))]
average_allele_expression = [[0,0] for c in range(total_loci)]
for (cell, loci_counts) in cell_counts.items():
if cell-1 in doublets:
continue
cluster = cell_clusters[cell-1]
for (locus, counts) in loci_counts.items():
ref = 0
alt = 0
if counts[0] > 0:
ref = counts[0]
if counts[1] > 0:
alt = counts[1]
if locus-1 in loci_for_soup:
cluster_allele_counts_soup[loci_for_soup[locus-1]][cluster][0] += ref
cluster_allele_counts_soup[loci_for_soup[locus-1]][cluster][1] += alt
average_allele_expression_soup[loci_for_soup[locus-1]][0] += ref
average_allele_expression_soup[loci_for_soup[locus-1]][1] += alt
if not locus-1 in locus_index:
continue
cluster_allele_counts[locus_index[locus-1]][cluster][0] += ref
cluster_allele_counts[locus_index[locus-1]][cluster][1] += alt
average_allele_expression[locus_index[locus-1]][0] += ref
average_allele_expression[locus_index[locus-1]][1] += alt
for locus in range(len(average_allele_expression)):
average_allele_expression[locus][0] /= float(total_cells)
average_allele_expression[locus][1] /= float(total_cells)
for locus in range(len(average_allele_expression_soup)):
average_allele_expression_soup[locus][0] /= float(total_cells)
average_allele_expression_soup[locus][1] /= float(total_cells)
#print(cluster_allele_counts
counts_dat = {'cells': total_cells,
'loci': len(cluster_allele_counts),
'k': max_cluster + 1,
'cluster_allele_counts': cluster_allele_counts,
'cluster_num_cells': cluster_counts,
'ploidy': int(args.ploidy),
'msoup': len(cluster_allele_counts_soup),
'cluster_allele_counts_soup':cluster_allele_counts_soup,
'average_allele_expression_soup':average_allele_expression_soup,
'average_allele_expression': average_allele_expression}
#cluster_allele_counts = cluster_allele_counts_soup
#locus_index = loci_for_soup
#print("done loading data")
fit = sm.optimizing(data=counts_dat)
#import pickle
#with open("soup.pickle",'wb') as out:
# pickle.dump(fit,out)
with open(args.soup_out,'w') as soup:
soup.write("ambient RNA estimated as "+str(float(fit['p_soup'])*100)+"%")
#with open("cluster_genotypes.tsv",'w') as geno:
# geno.write("chrom\tpos\tref\talt\t"+"\t".join([i for i in range(max_cluster+1)])+"\n")
import math
import numpy as np
import scipy
from collections import namedtuple
CallData = namedtuple('CallData','GT AO RO T E GO GN')
import gzip
vcftemplate = vcf.Reader(myopen(args.vcf))
vcfreader = vcf.Reader(myopen(args.vcf))
import math
tmp_vcf = dirname+"/tempsouporcell.vcf"
with open(tmp_vcf,'w') as geno:
vcfwriter = vcf.Writer(geno,vcftemplate)
samples = [str(cluster) for cluster in range(max_cluster+1)]
vcfwriter.template.samples = samples
locus = -1
for rec in vcfreader:
locus += 1
if locus in locus_index:
newrec = vcf.model._Record(rec.CHROM, rec.POS, rec.ID, rec.REF, rec.ALT, rec.QUAL, rec.FILTER, rec.INFO, 'GT:AO:RO:T:E:GO:GN', {str(x):x for x in range(max_cluster+1)})
calls = []
for cluster in range(max_cluster+1):
genotypes = fit['genotypes'][locus_index[locus]][cluster]
sumexp = logsumexp(genotypes)#[math.exp(x) for x in genotypes])
#//print(genotypes)
go = []
for g in genotypes:
if math.isnan(g):
go.append('NaN')
else:
go.append(str(int(g)))
go = ",".join(go)
#if sumexp == 0:
# posteriors = [0.333 for x in range(len(genotypes))]
#else:
truth = fit['truth'][locus_index[locus]]
err = fit['err'][locus_index[locus]]
total_truth_err = logsumexp([truth,err])
err = np.exp(err-total_truth_err)
#print(err)
logpost = [x - sumexp for x in genotypes]
posteriors = np.exp(logpost)
gn = []
for g in logpost:
if math.isnan(g):
gn.append("NaN")
else:
gn.append(str(int(g)))
gn = ",".join(gn)
largest = np.argmax(posteriors)
if err > 0.5:
newrec.FILTER = ['BACKGROUND']
#print(posteriors)
if len(posteriors) == 3:
gt = './.'
if posteriors[largest] > 0.5:
if largest == 0:
gt = '0/0'
elif largest == 1:
gt = '1/1'
elif largest == 2:
gt = '0/1'
elif len(posteriors) == 2:
gt = '.'
if posteriors[largest] > 0.75:
gt = str(largest)
ao = cluster_allele_counts[locus_index[locus]][cluster][1]
ro = cluster_allele_counts[locus_index[locus]][cluster][0]
truth = fit['truth'][locus_index[locus]]
if not math.isnan(truth):
truth = int(truth)
err = fit['err'][locus_index[locus]]
if not math.isnan(err):
err = int(err)
calls.append(vcf.model._Call(newrec, str(cluster), CallData(gt, ao, ro, truth, err, go, gn)))
newrec.samples = calls
vcfwriter.write_record(newrec)
with open(tmp_vcf) as tmp:
with open(args.vcf_out,'w') as out:
for line in tmp:
if line.startswith("#"):
if line.startswith("#CHROM\tPOS"):
out.write("#CHROM\tPOS\tID\tREF\tALT\tQUAL\tFILTER\tINFO\tFORMAT\t"+"\t".join([str(clust) for clust in range(max_cluster+1)])+"\n")
else:
out.write(line)
else:
out.write(line)
subprocess.check_call(["rm",tmp_vcf])