-
Notifications
You must be signed in to change notification settings - Fork 34
/
app_ollama.py
160 lines (125 loc) · 6.41 KB
/
app_ollama.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
import streamlit as st
import json
import time
import requests # Add this import for making HTTP requests to Ollama
from dotenv import load_dotenv
import os
# Load environment variables
load_dotenv()
# Get configuration from .env file
OLLAMA_URL = os.getenv('OLLAMA_URL', 'http://localhost:11434')
OLLAMA_MODEL = os.getenv('OLLAMA_MODEL', 'llama3.1')
def make_api_call(messages, max_tokens, is_final_answer=False):
for attempt in range(3):
try:
response = requests.post(
f"{OLLAMA_URL}/api/chat",
json={
"model": OLLAMA_MODEL,
"messages": messages,
"stream": False,
"options": {
"num_predict": max_tokens,
"temperature": 0.2
}
}
)
response.raise_for_status()
return json.loads(response.json()["message"]["content"])
except Exception as e:
if attempt == 2:
if is_final_answer:
return {"title": "Error",
"content": f"Failed to generate final answer after 3 attempts. Error: {str(e)}"}
else:
return {"title": "Error", "content": f"Failed to generate step after 3 attempts. Error: {str(e)}",
"next_action": "final_answer"}
time.sleep(1) # Wait for 1 second before retrying
def generate_response(prompt):
messages = [
{"role": "system", "content": """You are an expert AI assistant with advanced reasoning capabilities. Your task is to provide detailed, step-by-step explanations of your thought process. For each step:
1. Provide a clear, concise title describing the current reasoning phase.
2. Elaborate on your thought process in the content section.
3. Decide whether to continue reasoning or provide a final answer.
Response Format:
Use JSON with keys: 'title', 'content', 'next_action' (values: 'continue' or 'final_answer')
Key Instructions:
- Employ at least 5 distinct reasoning steps.
- Acknowledge your limitations as an AI and explicitly state what you can and cannot do.
- Actively explore and evaluate alternative answers or approaches.
- Critically assess your own reasoning; identify potential flaws or biases.
- When re-examining, employ a fundamentally different approach or perspective.
- Utilize at least 3 diverse methods to derive or verify your answer.
- Incorporate relevant domain knowledge and best practices in your reasoning.
- Quantify certainty levels for each step and the final conclusion when applicable.
- Consider potential edge cases or exceptions to your reasoning.
- Provide clear justifications for eliminating alternative hypotheses.
Example of a valid JSON response:
```json
{
"title": "Initial Problem Analysis",
"content": "To approach this problem effectively, I'll first break down the given information into key components. This involves identifying...[detailed explanation]... By structuring the problem this way, we can systematically address each aspect.",
"next_action": "continue"
}```
"""},
{"role": "user", "content": prompt},
{"role": "assistant", "content": "Thank you! I will now think step by step following my instructions, starting at the beginning after decomposing the problem."}
]
steps = []
step_count = 1
total_thinking_time = 0
while True:
start_time = time.time()
step_data = make_api_call(messages, 300)
end_time = time.time()
thinking_time = end_time - start_time
total_thinking_time += thinking_time
steps.append((f"Step {step_count}: {step_data['title']}", step_data['content'], thinking_time))
messages.append({"role": "assistant", "content": json.dumps(step_data)})
if step_data['next_action'] == 'final_answer':
break
step_count += 1
# Yield after each step for Streamlit to update
yield steps, None # We're not yielding the total time until the end
# Generate final answer
messages.append({"role": "user", "content": "Please provide the final answer based on your reasoning above."})
start_time = time.time()
final_data = make_api_call(messages, 200, is_final_answer=True)
end_time = time.time()
thinking_time = end_time - start_time
total_thinking_time += thinking_time
steps.append(("Final Answer", final_data['content'], thinking_time))
yield steps, total_thinking_time
def main():
st.set_page_config(page_title="ol1 prototype - Ollama version", page_icon="🧠", layout="wide")
st.title("ol1: Using Ollama to create o1-like reasoning chains")
st.markdown("""
This is an early prototype of using prompting to create o1-like reasoning chains to improve output accuracy. It is not perfect and accuracy has yet to be formally evaluated. It is powered by Ollama so that the reasoning step is local!
Forked from [bklieger-groq](https://github.com/bklieger-groq)
Open source [repository here](https://github.com/win4r/o1)
""")
st.markdown(f"**Current Configuration:**")
st.markdown(f"- Ollama URL: `{OLLAMA_URL}`")
st.markdown(f"- Ollama Model: `{OLLAMA_MODEL}`")
# Text input for user query
user_query = st.text_input("Enter your query:", placeholder="e.g., How many 'R's are in the word strawberry?")
if user_query:
st.write("Generating response...")
# Create empty elements to hold the generated text and total time
response_container = st.empty()
time_container = st.empty()
# Generate and display the response
for steps, total_thinking_time in generate_response(user_query):
with response_container.container():
for i, (title, content, thinking_time) in enumerate(steps):
if title.startswith("Final Answer"):
st.markdown(f"### {title}")
st.markdown(content.replace('\n', '<br>'), unsafe_allow_html=True)
else:
with st.expander(title, expanded=True):
st.markdown(content.replace('\n', '<br>'), unsafe_allow_html=True)
# Only show total time when it's available at the end
if total_thinking_time is not None:
time_container.markdown(f"**Total thinking time: {total_thinking_time:.2f} seconds**")
if __name__ == "__main__":
main()