forked from caiobran/mstables
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdataframes.py
279 lines (217 loc) · 9.72 KB
/
dataframes.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
import pandas as pd
import numpy as np
import sqlite3
import json
import sys
import re
import os
class DataFrames():
db_file = 'db/mstables.sqlite' # Standard db file name
def __init__(self, file = db_file):
msg = 'Creating initial DataFrames objects from file {}...\n'
print(msg.format(file))
self.conn = sqlite3.connect(
file, detect_types=sqlite3.PARSE_COLNAMES)
self.cur = self.conn.cursor()
# Row Headers
colheaders = self.table('ColHeaders', True)
self.colheaders = colheaders.set_index('id')
# Dates and time references
timerefs = self.table('TimeRefs', True)
self.timerefs = timerefs.set_index('id').replace(['', '—'], None)
# Reference tables
self.urls = self.table('URLs', True)
self.securitytypes = self.table('SecurityTypes', True)
self.tickers = self.table('Tickers', True)
self.sectors = self.table('Sectors', True)
self.industries = self.table('Industries', True)
self.styles = self.table('StockStyles', True)
self.exchanges = self.table('Exchanges', True)
self.countries = (self.table('Countries', True)
.rename(columns={'a2_iso':'country_c2', 'a3_un':'country_c3'}))
self.companies = self.table('Companies', True)
self.currencies = self.table('Currencies', True)
self.stocktypes = self.table('StockTypes', True)
#self.fetchedurls = self.table('Fetched_urls', True)
# Master table
self.master0 = self.table('Master', True)
# Merge Tables
self.master = (self.master0
# Ticker Symbols
.merge(self.tickers, left_on='ticker_id', right_on='id')
.drop(['id'], axis=1)
# Company / Security Name
.merge(self.companies, left_on='company_id', right_on='id')
.drop(['id', 'company_id'], axis=1)
# Exchanges
.merge(self.exchanges, left_on='exchange_id', right_on='id')
.drop(['id'], axis=1)
# Industries
.merge(self.industries, left_on='industry_id', right_on='id')
.drop(['id', 'industry_id'], axis=1)
# Sectors
.merge(self.sectors, left_on='sector_id', right_on='id')
.drop(['id', 'sector_id'], axis=1)
# Countries
.merge(self.countries, left_on='country_id', right_on='id')
.drop(['id', 'country_id'], axis=1)
# Security Types
.merge(self.securitytypes, left_on='security_type_id', right_on='id')
.drop(['id', 'security_type_id'], axis=1)
# Stock Types
.merge(self.stocktypes, left_on='stock_type_id', right_on='id')
.drop(['id', 'stock_type_id'], axis=1)
# Stock Style Types
.merge(self.styles, left_on='style_id', right_on='id')
.drop(['id', 'style_id'], axis=1)
# Quote Header Info
.merge(self.quoteheader(), on=['ticker_id', 'exchange_id'])
.rename(columns={'fpe':'PE_Forward'})
# Currency
.merge(self.currencies, left_on='currency_id', right_on='id')
.drop(['id', 'currency_id'], axis=1)
# Fiscal Year End
.merge(self.timerefs, left_on='fyend_id', right_on='id')
.drop(['fyend_id'], axis=1)
.rename(columns={'dates':'fy_end'})
)
# Change date columns to TimeFrames
self.master['fy_end'] = pd.to_datetime(self.master['fy_end'])
self.master['update_date'] = pd.to_datetime(self.master['update_date'])
self.master['lastdate'] = pd.to_datetime(self.master['lastdate'])
self.master['_52wk_hi'] = self.master['_52wk_hi'].astype('float')
self.master['_52wk_lo'] = self.master['_52wk_lo'].astype('float')
self.master['lastprice'] = self.master['lastprice'].astype('float')
self.master['openprice'] = self.master['openprice'].astype('float')
print('\nInitial DataFrames created successfully.')
def quoteheader(self):
return self.table('MSheader')
def valuation(self):
# Create DataFrame
val = self.table('MSvaluation')
# Rename column headers with actual year values
yrs = val.iloc[0, 2:13].replace(self.timerefs['dates']).to_dict()
cols = val.columns[:13].values.tolist() + list(map(
lambda col: ''.join([col[:3], yrs[col[3:]]]), val.columns[13:]))
val.columns = cols
# Resize and reorder columns
val = val.set_index(['exchange_id', 'ticker_id']).iloc[:, 11:]
return val
def keyratios(self):
keyr = self.table('MSfinancials')
yr_cols = ['Y0', 'Y1', 'Y2', 'Y3', 'Y4', 'Y5', 'Y6',
'Y7', 'Y8', 'Y9', 'Y10']
keyr = self.get_yrcolumns(keyr, yr_cols)
keyr[yr_cols[:-1]] = keyr[yr_cols[:-1]].astype('datetime64')
return keyr
def finhealth(self):
finan = self.table('MSratio_financial')
yr_cols = [col for col in finan.columns if col.startswith('fh_Y')]
finan = self.get_yrcolumns(finan, yr_cols)
finan[yr_cols[:-1]] = finan[yr_cols[:-1]].astype('datetime64')
return finan
def profitability(self):
profit= self.table('MSratio_profitability')
yr_cols = [col for col in profit.columns if col.startswith('pr_Y')]
profit = self.get_yrcolumns(profit, yr_cols)
profit[yr_cols[:-1]] = profit[yr_cols[:-1]].astype('datetime64')
return profit
def growth(self):
growth = self.table('MSratio_growth')
yr_cols = [col for col in growth.columns if col.startswith('gr_Y')]
growth = self.get_yrcolumns(growth, yr_cols)
growth[yr_cols[:-1]] = growth[yr_cols[:-1]].astype('datetime64')
return growth
def cfhealth(self):
cfhealth = self.table('MSratio_cashflow')
yr_cols = [col for col in cfhealth.columns if col.startswith('cf_Y')]
cfhealth = self.get_yrcolumns(cfhealth, yr_cols)
cfhealth[yr_cols[:-1]] = cfhealth[yr_cols[:-1]].astype('datetime64')
return cfhealth
def efficiency(self):
effic = self.table('MSratio_efficiency')
yr_cols = [col for col in effic.columns if col.startswith('ef_Y')]
effic = self.get_yrcolumns(effic, yr_cols)
effic[yr_cols[:-1]] = effic[yr_cols[:-1]].astype('datetime64')
return effic
# Income Statement - Annual
def annualIS(self):
rep_is_yr = self.table('MSreport_is_yr')
yr_cols = [col for col in rep_is_yr.columns
if col.startswith('Year_Y')]
rep_is_yr = self.get_yrcolumns(rep_is_yr, yr_cols)
rep_is_yr[yr_cols[:-1]] = rep_is_yr[yr_cols[:-1]].astype('datetime64')
return rep_is_yr
# Income Statement - Quarterly
def quarterlyIS(self):
rep_is_qt = self.table('MSreport_is_qt')
yr_cols = [col for col in rep_is_qt.columns
if col.startswith('Year_Y')]
rep_is_qt = self.get_yrcolumns(rep_is_qt, yr_cols)
rep_is_qt[yr_cols[:-1]] = rep_is_qt[yr_cols[:-1]].astype('datetime64')
return rep_is_qt
# Balance Sheet - Annual
def annualBS(self):
rep_bs_yr = self.table('MSreport_bs_yr')
yr_cols = [col for col in rep_bs_yr.columns
if col.startswith('Year_Y')]
rep_bs_yr = self.get_yrcolumns(rep_bs_yr, yr_cols)
rep_bs_yr[yr_cols[:-1]] = rep_bs_yr[yr_cols[:-1]].astype('datetime64')
return rep_bs_yr
# Balance Sheet - Quarterly
def quarterlyBS(self):
rep_bs_qt = self.table('MSreport_bs_qt')
yr_cols = [col for col in rep_bs_qt.columns
if col.startswith('Year_Y')]
rep_bs_qt = self.get_yrcolumns(rep_bs_qt, yr_cols)
rep_bs_qt[yr_cols[:-1]] = rep_bs_qt[yr_cols[:-1]].astype('datetime64')
return rep_bs_qt
# Cashflow Statement - Annual
def annualCF(self):
rep_cf_yr = self.table('MSreport_cf_yr')
yr_cols = [col for col in rep_cf_yr.columns
if col.startswith('Year_Y')]
rep_cf_yr = self.get_yrcolumns(rep_cf_yr, yr_cols)
rep_cf_yr[yr_cols[:-1]] = rep_cf_yr[yr_cols[:-1]].astype('datetime64')
return rep_cf_yr
# Cashflow Statement - Quarterly
def quarterlyCF(self):
rep_cf_qt = self.table('MSreport_cf_qt')
yr_cols = [col for col in rep_cf_qt.columns
if col.startswith('Year_Y')]
rep_cf_qt = self.get_yrcolumns(rep_cf_qt, yr_cols)
rep_cf_qt[yr_cols[:-1]] = rep_cf_qt[yr_cols[:-1]].astype('datetime64')
return rep_cf_qt
# 10yr Price History
def priceHistory(self):
return self.table('MSpricehistory')
def insider_trades(self):
df_insiders = self.table('Insiders', False)
df_tradetypes = self.table('TransactionType', False)
df_trades = self.table('InsiderTransactions', False)
df_trades['date'] = pd.to_datetime(df_trades['date'])
df = (df_trades
.merge(df_insiders, left_on='name_id', right_on='id')
.drop(['id', 'name_id'], axis=1)
.merge(df_tradetypes, left_on='transaction_id', right_on='id')
.drop(['id', 'transaction_id'], axis=1)
)
return df
def get_yrcolumns(self, df, cols):
for yr in cols:
df = (df.merge(self.timerefs, left_on=yr, right_on='id')
.drop(yr, axis=1).rename(columns={'dates':yr}))
return df
def table(self, tbl, prnt = False):
self.cur.execute('SELECT * FROM {}'.format(tbl))
cols = list(zip(*self.cur.description))[0]
try:
if prnt == True:
msg = '\t- DataFrame \'df.{}\' ...'
print(msg.format(tbl.lower()))
return pd.DataFrame(self.cur.fetchall(), columns=cols)
except:
raise
def __del__(self):
self.cur.close()
self.conn.close()