forked from eddelbuettel/ctv-hpc
-
Notifications
You must be signed in to change notification settings - Fork 0
/
HighPerformanceComputing.ctv
712 lines (685 loc) · 30.6 KB
/
HighPerformanceComputing.ctv
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
<!--Hey Emacs, make this -*- mode: XML -*- -->
<CRANTaskView>
<name>HighPerformanceComputing</name>
<topic>High-Performance and Parallel Computing with R</topic>
<maintainer email="Dirk.Eddelbuettel@R-project.org">Dirk Eddelbuettel</maintainer>
<version>2017-09-20</version>
<info>
<p>
This CRAN task view contains a list of packages, grouped by topic, that
are useful for high-performance computing (HPC) with R. In this context, we
are defining 'high-performance computing' rather loosely as just about anything
related to pushing R a little further: using compiled code,
parallel computing (in both explicit and implicit modes), working with
large objects as well as profiling.
</p>
<p>
Unless otherwise mentioned, all packages presented with hyperlinks
are available from CRAN, the
Comprehensive R Archive Network.
</p>
<p>
Several of the areas discussed in this Task View are undergoing rapid
change. Please send suggestions for additions and extensions for this task
view to the <a href="mailto:Dirk.Eddelbuettel@R-project.org">task view maintainer</a>.
</p>
<p>
Suggestions and corrections by Achim Zeileis, Markus
Schmidberger, Martin Morgan, Max Kuhn, Tomas Radivoyevitch,
Jochen Knaus, Tobias Verbeke, Hao Yu, David Rosenberg, Marco
Enea, Ivo Welch, Jay Emerson, Wei-Chen Chen, Bill Cleveland,
Ross Boylan, Ramon Diaz-Uriarte, Mark Zeligman, Kevin Ushey, Graham
Jeffries, and Will Landau (as well as others I may have forgotten to
add here) are gratefully acknowledged.
</p>
<p>
Contributions are always welcome, and encouraged. Since the start of
this CRAN task view in October 2008, most contributions have arrived as
email suggestions. The source file for this particular task view file
now also reside in a GitHub repository (see below) so that pull
requests are also possible.
</p>
<p>
The <code>ctv</code> package supports these Task Views. Its functions
<code>install.views</code> and <code>update.views</code> allow,
respectively, installation or update of packages from a given Task View;
the option <code>coreOnly</code> can restrict operations to packages labeled as
<em>core</em> below.
</p>
<p>
<strong>Direct support in R started with release 2.14.0</strong>
which includes a new package <strong>parallel</strong> incorporating
(slightly revised) copies of packages multicore and
<pkg>snow</pkg>. Some types of clusters are not handled directly by
the base package 'parallel'. However, and as explained in the package vignette, the parts of
parallel which provide <pkg>snow</pkg>-like functions will
accept <pkg>snow</pkg> clusters including MPI clusters.
<br/>
The <strong>parallel</strong> package also contains support for multiple
RNG streams following L'Ecuyer et al (2002), with support for
both mclapply and snow clusters.
<br/>
The version released for R 2.14.0 contains base functionality:
higher-level convenience functions are planned for later R releases.
</p>
<p>
<strong>Parallel computing: Explicit parallelism</strong>
</p>
<ul>
<li>Several packages provide the communications layer required for parallel
computing. The first package in this area was
rpvm by Li and Rossini which uses the PVM (Parallel Virtual
Machine) standard and libraries. rpvm is no longer actively
maintained, but available from its CRAN archive directory.
</li>
<li>In recent years, the
alternative MPI (Message Passing Interface) standard has become the
de facto standard in parallel computing. It is supported in R via
the <pkg>Rmpi</pkg> by Yu. <pkg>Rmpi</pkg> package is mature yet actively
maintained and offers access to numerous functions from the MPI
API, as well as a number of R-specific extensions. <pkg>Rmpi</pkg>
can be used with the LAM/MPI, MPICH / MPICH2, Open MPI, and Deino MPI
implementations. It should be noted that LAM/MPI is now in
maintenance mode, and new development is focussed on Open MPI.
</li>
<li>
The <pkg>pbdMPI</pkg> package provides S4 classes to directly interface
MPI in order to support the Single Program/Multiple Data (SPMD) parallel
programming style which is particularly useful for batch parallel execution.
The <pkg>pbdSLAP</pkg> builds on this and uses scalable linear algebra
packages (namely BLACS, PBLAS, and ScaLAPACK) in double precision based
on ScaLAPACK version 2.0.2.
The <pkg>pbdBASE</pkg> builds on these and provides the core classes
and methods for distributed data types upon which the
<pkg>pbdDMAT</pkg> builds to provide distributed dense matrices for "Programming
with Big Data". The <pkg>pbdNCDF4</pkg> package permits
multiple processes to write to the same file (without manual
synchronization) and supports terabyte-sized files.
The <pkg>pbdDEMO</pkg> package provides examples for these
packages, and a detailed vignette.
The <pkg>pbdPROF</pkg> package profiles MPI communication SPMD code
via MPI profiling libraries, such as fpmpi, mpiP, or TAU.
</li>
<li>An alternative is provided by the <pkg>nws</pkg> (NetWorkSpaces)
packages from REvolution Computing. It is the successor to the
earlier LindaSpaces approach to parallel computing, and is
implemented on top of the Twisted networking toolkit for Python.
</li>
<li>The <pkg>snow</pkg> (Simple Network of Workstations) package by
Tierney et al. can use PVM, MPI, NWS as well as direct networking
sockets. It provides an abstraction layer by hiding the
communications details. The <pkg>snowFT</pkg> package provides
fault-tolerance extensions to <pkg>snow</pkg>.
</li>
<li>The <pkg>snowfall</pkg> package by Knaus provides a more recent
alternative to <pkg>snow</pkg>. Functions can be used in sequential or
parallel mode.
</li>
<li>The <pkg>foreach</pkg> package allows general iteration over
elements in a collection without the use of an explicit loop
counter. Using foreach without side effects also facilitates
executing the loop in parallel which is possible via
the <pkg>doMC</pkg> (using parallel/multicore on single
workstations), <pkg>doSNOW</pkg> (using <pkg>snow</pkg>, see
above), <pkg>doMPI</pkg> (using <pkg>Rmpi</pkg>) packages,
<pkg>doFuture</pkg> (using <pkg>future</pkg> or
<pkg>future.BatchJobs</pkg>), and
<pkg>doRedis</pkg> (using <pkg>rredis</pkg>) packages.
</li>
<li>The <pkg>future</pkg> package allows for synchroneous (sequential)
and asynchronous (parallel) evaluations via abstraction of futures,
either via function calls or implicitly via promises. Global variables
are automatically identified. Iteration over elements in a collection
is supported.
</li>
<li>The <pkg>Rborist</pkg> package employs OpenMP pragmas to exploit
predictor-level parallelism in the Random Forest algorithm which
promotes efficient use of multicore hardware in restaging data and in
determining splitting criteria, both of which are performance
bottlenecks in the algorithm.
</li>
<li>The <pkg>h2o</pkg> package connects to the h2o open source machine
learning environment which has scalable implementations of random
forests, GBM, GLM (with elastic net regularization), and deep learning.
</li>
<li>The <pkg>randomForestSRC</pkg> package can use both OpenMP as well
as MPI for random forest extensions suitable for survival analysis,
competing risks analysis, classification as well as regression
</li>
</ul>
<p>
<strong>Parallel computing: Implicit parallelism</strong>
</p>
<ul>
<li>The pnmath package by Tierney
(<a href="http://www.stat.uiowa.edu/~luke/R/experimental/">link</a>)
uses the Open MP parallel processing directives of recent compilers
(such gcc 4.2 or later) for implicit parallelism by replacing a
number of internal R functions with replacements that can make use of
multiple cores --- without any explicit requests from the user. The
alternate pnmath0 package offers the same functionality using
Pthreads for environments in which the newer compilers are not
available. Similar functionality is expected to become integrated
into R 'eventually'.
</li>
<li>The romp package by Jamitzky was presented at useR! 2008
(<a href="http://www.statistik.tu-dortmund.de/useR-2008/slides/Jamitzky.pdf">slides</a>)
and offers another interface to Open MP using Fortran. The code is still
pre-alpha and available from the Google Code project <gcode>romp</gcode>.
An R-Forge project <rforge>romp</rforge> was initiated but there is no package, yet.
</li>
<li>The R/parallel package by Vera, Jansen and Suppi offers a C++-based master-slave dispatch
mechanism for parallel execution (<a href="http://www.rparallel.org/">link</a>)
</li>
<li>The <pkg>Rdsm</pkg> package provides a threads-like parallel
computing environment, both on multicore machine and across the network
by providing facilities inspired from distributed shared memory
programming.
</li>
<li>
The <pkg>RhpcBLASctl</pkg> package detects the number of available
BLAS cores, and permits explicit selection of the number of
cores.
</li>
<li>
The <pkg>Rhpc</pkg> permits <code>*apply()</code> style dispatch via MPI.
</li>
<li>
The <pkg>drake</pkg> package is an R-focused
<a href="https://github.com/pditommaso/awesome-pipeline">pipeline toolkit</a> similar to
<a href="https://www.gnu.org/software/make">Make</a>. Parallel computing relies on the
<code>parallel</code>, <code>future</code>, <code>batchtools</code>,
and <code>future.batchtools</code> packages, as well as
<a href="https://www.gnu.org/software/make">Makefiles</a>. Drake uses code analysis
to configure the user's workflow and make the parallelism implicit.
</li>
</ul>
<p>
<strong>Parallel computing: Grid computing</strong>
</p>
<ul>
<li>The multiR package by Grose was presented at useR! 2008
but has not been released. It may offer a snow-style framework on a grid computing platform.
</li>
<li>The <rforge>biocep-distrib</rforge> project by Chine offers a Java-based framework for local, Grid,
or Cloud computing. It is under active development.
</li>
</ul>
<p>
<strong>Parallel computing: Hadoop</strong>
</p>
<ul>
<li>
The RHIPE package, started by Saptarshi Guha and now developed by a core team via
<a href="https://github.com/saptarshiguha/RHIPE/">GitHub</a>,
provides an interface between R and Hadoop for analysis of large complex data wholly from
within R using the Divide and Recombine approach to big data.
</li>
<li>
The rmr package by Revolution Analytics also provides an interface between R and Hadoop
for a Map/Reduce programming framework. (<a href="https://github.com/RevolutionAnalytics/RHadoop/wiki/rmr">link</a>)
</li>
<li>
A related package, segue package by Long, permits easy execution of embarassingly parallel task on Elastic Map Reduce (EMR) at Amazon.
(<a href="http://code.google.com/p/segue/">link</a>)
</li>
<li>
The <pkg>RProtoBuf</pkg> package provides an interface to
Google's language-neutral, platform-neutral, extensible
mechanism for serializing structured data. This package can
be used in R code to read data streams from other systems in a
distributed MapReduce setting where data is serialized and
passed back and forth between tasks.
</li>
<li>
The <pkg>HistogramTools</pkg> package provides a number of
routines useful for the construction, aggregation,
manipulation, and plotting of large numbers of Histograms such
as those created by Mappers in a MapReduce application.
</li>
<li>
The <pkg>toaster</pkg> package performs in-database computations
utilizing the parallel / distributed Teradata Aster analytical platform
</li>
</ul>
<p>
<strong>Parallel computing: Random numbers</strong>
</p>
<ul>
<li>Random-number generators for parallel computing are available via
the <pkg>rlecuyer</pkg>
package by Sevcikova and Rossini.
</li>
<li>The <pkg>doRNG</pkg> package provides functions to perform
reproducible parallel foreach loops, using independent random
streams as generated by the package rstream, suitable for the
different foreach backends.
</li>
</ul>
<p>
<strong>Parallel computing: Resource managers and batch schedulers</strong>
</p>
<ul>
<li>
Job-scheduling toolkits permit management of
parallel computing resources and tasks. The slurm (Simple Linux
Utility for Resource Management) set of programs works well with
MPI and slurm jobs can be submitted from R using the <pkg>rslurm</pkg>
package. (<a href="http://slurm.schedmd.com/">link</a>)
</li>
<li>
The Condor toolkit (<a href="http://www.cs.wisc.edu/condor/">link</a>) from
the University of Wisconsin-Madison has been used with R as described
in this <a href="http://www.r-project.org/doc/Rnews/Rnews_2005-2.pdf">R
News article</a>.
</li>
<li>
The sfCluster package by Knaus can be used with <pkg>snowfall</pkg>.
(<a href="http://www.imbi.uni-freiburg.de/parallel/">link</a>) but is
currently limited to LAM/MPI.
</li>
<li>
The <pkg>batch</pkg> package by Hoffmann can launch parallel computing
requests onto a cluster and gather results.
</li>
<li>
The <pkg>BatchJobs</pkg> package provides Map, Reduce and
Filter variants to manage R jobs and their results on batch
computing systems like PBS/Torque, LSF and Sun Grid
Engine. Multicore and SSH systems are also supported. The
<pkg>BatchExperiments</pkg> package extends it with an
abstraction layer for running statistical experiments. Package
<pkg>batchtools</pkg> is a successor / extension to both.
</li>
<li>
The <pkg>flowr</pkg> package offers a scatter-gather approach to submit jobs
lists (including dependencies) to the computing cluster via simple data.frames
as inputs. It supports LSF, SGE, Torque and SLURM.
</li>
<li>
The <pkg>clustermq</pkg> package sends function calls as jobs on LSF,
SGE and SLURM via a single line of code without using network-mounted
storage. It also supports use of remote clusters via SSH.
</li>
</ul>
<p>
<strong>Parallel computing: Applications</strong>
</p>
<ul>
<li>
The <pkg>caret</pkg> package by Kuhn can use various frameworks
(MPI, NWS etc) to parallelized cross-validation and bootstrap characterizations of predictive models.
</li>
<li>
The <bioc>maanova</bioc> package on Bioconductor by Wu can use <pkg>snow</pkg>
and <pkg>Rmpi</pkg> for the analysis of micro-array experiments.
</li>
<li>
The <pkg>pvclust</pkg> package by Suzuki and Shimodaira can use <pkg>snow</pkg>
and <pkg>Rmpi</pkg> for hierarchical clustering via multiscale
bootstraps.
</li>
<li>
The <pkg>tm</pkg> package by Feinerer can use <pkg>snow</pkg>
and <pkg>Rmpi</pkg> for parallelized text mining.
</li>
<li>
The <pkg>varSelRF</pkg> package by Diaz-Uriarte can use <pkg>snow</pkg>
and <pkg>Rmpi</pkg> for parallelized use of variable selection via
random forests.
</li>
<li>
The <pkg>bcp</pkg> package by Erdman and Emerson for the Bayesian
analysis of change points can use <pkg>foreach</pkg> for parallelized operations.
</li>
<li>
The <bioc>multtest</bioc> package by Pollard et al. on Bioconductor can
use <pkg>snow</pkg>, <pkg>Rmpi</pkg> or rpvm for
resampling-based testing of multiple hypothesis.
</li>
<li>
The <pkg>GAMBoost</pkg> package by Binder for <code>glm</code>
and <code>gam</code> model fitting via boosting using b-splines,
the <pkg>Matching</pkg> package by Sekhon for multivariate and propensity
score matching,
the <pkg>STAR</pkg> package by Pouzat for spike train analysis,
the <pkg>bnlearn</pkg> package by Scutari for bayesian network
structure learning,
the <pkg>latentnet</pkg> package by Krivitsky and Handcock for latent
position and cluster models,
the <pkg>lga</pkg> package by Harrington for linear grouping analysis,
the <pkg>peperr</pkg> package by Porzelius and Binder for parallised
estimation of prediction error,
the <pkg>orloca</pkg> package by Fernandez-Palacin and Munoz-Marquez
for operations research locational analysis,
the <pkg>rgenoud</pkg> package by Mebane and Sekhon for genetic
optimization using derivatives
the <bioc>affyPara</bioc> package by Schmidberger, Vicedo and
Mansmann for parallel normalization of Affymetrix microarrays,
and the <bioc>puma</bioc> package by Pearson et al. which propagates
uncertainty into standard microarray analyses such as differential
expression
all can use <pkg>snow</pkg> for parallelized operations using either
one of the MPI, PVM, NWS or socket protocols supported by <pkg>snow</pkg>.
</li>
<li>The <gcode>bugsparallel</gcode> package uses <pkg>Rmpi</pkg> for distributed
computing of multiple MCMC chains using WinBUGS.
</li>
<li>The <pkg>partDSA</pkg> package uses <pkg>nws</pkg> for generating a
piecewise constant estimation list of increasingly complex
predictors based on an intensive and comprehensive search over the
entire covariate space.
</li>
<li>The <pkg>dclone</pkg> package provides a global optimization
approach and a variant of simulated annealing which exploits Bayesian
MCMC tools to get MLE point estimates and standard errors using low
level functions for implementing maximum likelihood estimating
procedures for complex models using data cloning and Bayesian Markov
chain Monte Carlo methods with support for JAGS, WinBUGS and
OpenBUGS; parallel computing is supported via the <pkg>snow</pkg>
package.
</li>
<li>The <pkg>pmclust</pkg> package utilizes unsupervised model-based
clustering for high dimensional (ultra) large data. The package uses
<pkg>pbdMPI</pkg> to perform a parallel version of the EM algorithm for
finite mixture Gaussian models.
</li>
<li>The <pkg>harvestr</pkg> package provides helper functions
for (reproducible) simulations.
</li>
<li>
Nowadays, many packages can use the facilities offered by
the <strong>parallel</strong> package. One example
is <pkg>pls</pkg>, another is <pkg>PGICA</pkg> which can run ICA
analysis in parallel on SGE or multicore platforms.
</li>
<li>
The <pkg>sprint</pkg> (an acronym for "Simple Parallel R INTerface")
package provides a parallel computing framework for R making High
Performance Computing (HPC) accessible to users who are not familiar
with parallel programming and the use of HPC architectures. It
contains a library of parallelised R functions for correlation,
partitioning around medoids, apply, permutation testing,
bootstrapping, random forest, rank product and hamming distance.
</li>
<li>
The <pkg>pbapply</pkg> package offers a progress bar for vectorized R
functions in the `*apply` family, and supports several backends.
</li>
<li>
The <pkg>Sim.DiffProc</pkg> package simulates and estimates
multidimensional Itô and Stratonovich stochastic differential
equations in parallel.
</li>
</ul>
<p>
<strong>Parallel computing: GPUs</strong>
</p>
<ul>
<li>
The <pkg>gputools</pkg> package by Buckner and Seligman
provides several common data-mining algorithms which are
implemented using a mixture of nVidia's CUDA langauge and
cublas library. Given a computer with an nVidia GPU these
functions may be substantially more efficient than native R
routines.
</li>
<li>
The <pkg>cudaBayesreg</pkg> package by da Silva implements
the <code>rhierLinearModel</code> from the <pkg>bayesm</pkg> package
using nVidia's CUDA langauge and tools to provide high-performance
statistical analysis of fMRI voxels.
</li>
<li>
The rgpu package (see below for link) aims to speed up bioinformatics
analysis by using the GPU.
</li>
<li>
The <pkg>gcbd</pkg> package implements a benchmarking framework for
BLAS and GPUs (using <pkg>gputools</pkg>).
</li>
<li>
The <pkg>OpenCL</pkg> package provides an interface from R to
OpenCL permitting hardware- and vendor neutral interfaces to
GPU programming.
</li>
<li>
The <pkg>permGPU</pkg> package computes permutation resampling
inference in the context of RNA microarray studies on the GPU,
it uses CUDA (>= 4.5)
</li>
<li>
The <pkg>gmatrix</pkg> package enables the evaluation of matrix and vector
operations using GPU coprocessors such that intermediate computations may be
kept on the coprocessor and reused, with potentially significant performance
enhancements by minimizing data movement.
</li>
<li>
The <pkg>gpuR</pkg> package offers GPU-enabled functions: New gpu*
and vcl* classes are provided to wrap typical R objects (e.g. vector,
matrix) mirroring typical R syntax without the need to know OpenCL.
</li>
</ul>
<p>
<strong>Large memory and out-of-memory data</strong>
</p>
<ul>
<li>The <pkg>biglm</pkg> package by Lumley uses incremental computations to
offer <code>lm()</code> and <code>glm()</code> functionality to
data sets stored outside of R's main memory.
</li>
<li>The <pkg>ff</pkg> package by Adler et al. offers file-based access to data sets
that are too large to be loaded into memory, along with a number of
higher-level functions.
</li>
<li>The <pkg>bigmemory</pkg> package by Kane and Emerson permits storing large objects such
as matrices in memory (as well as via files) and uses external
pointer objects to refer to them. This permits transparent access
from R without bumping against R's internal memory limits. Several R
processes on the same computer can also share big memory objects.
</li>
<li>A large number of database packages, and database-alike packages
(such as <pkg>sqldf</pkg> by Grothendieck and <pkg>data.table</pkg>
by Dowle) are also of potential interest but not reviewed here.
</li>
<li>The <pkg>HadoopStreaming</pkg> package provides a framework for
writing map/reduce scripts for use in Hadoop Streaming; it also
facilitates operating on data in a streaming fashion which does not
require Hadoop.
</li>
<li>The <pkg>speedglm</pkg> package permits to fit (generalised) linear
models to large data. For in-memory data sets, speedlm() or
speedglm() can be used along with update.speedlm() which can update
fitted models with new data. For out-of-memory data sets, shglm() is
available; it works in the presence of factors and can check for
singular matrices.
</li>
<li>
The <pkg>biglars</pkg> package by Seligman et al can use the <pkg>ff</pkg>
to support large-than-memory datasets for least-angle regression,
lasso and stepwise regression.
</li>
<li>The <pkg>MonetDB.R</pkg> package allows R to access the MonetDB
column-oriented, open source database system as a
backend.
</li>
<li>The <pkg>ffbase</pkg> package by de Jonge et al adds basic
statistical functionality to the <pkg>ff</pkg> package.
</li>
<li>The <pkg>LaF</pkg> package provides methods for fast access to
large ASCII files in csv or fixed-width format.
</li>
</ul>
<p>
<strong>Easier interfaces for Compiled code</strong>
</p>
<ul>
<li>
The <pkg>inline</pkg> package by Sklyar et al eases adding code in C,
C++ or Fortran to R. It takes care of the compilation, linking and
loading of embeded code segments that are stored as R strings.
</li>
<li>
The <pkg>Rcpp</pkg> package by Eddelbuettel and Francois offers a
number of C++ clases that makes transferring R objects to C++
functions (and back) easier, and the <pkg>RInside</pkg> package
by the same authors allows easy embedding of R itself into C++
applications for faster and more direct data transfer.
</li>
<li>
The <pkg>RcppParallel</pkg> package by Allaire et al. bundles the
<a href="https://www.threadingbuildingblocks.org">Intel Threading Building Blocks</a>
and <a href="http://tinythreadpp.bitsnbites.eu">TinyThread</a>
libraries. Together with <pkg>Rcpp</pkg>, RcppParallel makes it
easy to write safe, performant, concurrently-executing C++ code,
and use that code within R and R packages.
</li>
<li>
The <pkg>rJava</pkg> package by Urbanek provides a low-level
interface to Java similar to the <code>.Call()</code> interface for C
and C++.
</li>
<!-- <li>Fortran interfaces -->
<!-- </li> -->
<!-- <li> -->
<!-- </li>Debugging tools -->
</ul>
<p>
<strong>Profiling tools</strong>
</p>
<ul>
<li>The <pkg>profr</pkg> package by Wickham can visualize output from
the <code>Rprof</code> interface for profiling.
</li>
<li>The <pkg>proftools</pkg> package by Tierney, and the
<pkg>aprof</pkg> package by Visser, can also be used to analyse
profiling output.
</li>
<li> The <pkg>GUIProfiler</pkg> package visualizes the results of
profiling R programs.
</li>
</ul>
</info>
<packagelist>
<pkg>aprof</pkg>
<pkg>batch</pkg>
<pkg>BatchExperiments</pkg>
<pkg>BatchJobs</pkg>
<pkg>batchtools</pkg>
<pkg>bayesm</pkg>
<pkg>bcp</pkg>
<pkg>biglars</pkg>
<pkg>biglm</pkg>
<pkg>bigmemory</pkg>
<pkg>bnlearn</pkg>
<pkg>caret</pkg>
<pkg>clustermq</pkg>
<pkg>cudaBayesreg</pkg>
<pkg>data.table</pkg>
<pkg>dclone</pkg>
<pkg>doFuture</pkg>
<pkg>doMC</pkg>
<pkg>doMPI</pkg>
<pkg>doRedis</pkg>
<pkg>doRNG</pkg>
<pkg>doSNOW</pkg>
<pkg>drake</pkg>
<pkg>ff</pkg>
<pkg>ffbase</pkg>
<pkg>flowr</pkg>
<pkg>foreach</pkg>
<pkg>future</pkg>
<pkg>future.BatchJobs</pkg>
<pkg>GAMBoost</pkg>
<pkg>gcbd</pkg>
<pkg>gmatrix</pkg>
<pkg>gputools</pkg>
<pkg>gpuR</pkg>
<pkg>GUIProfiler</pkg>
<pkg>h2o</pkg>
<pkg>HadoopStreaming</pkg>
<pkg>harvestr</pkg>
<pkg>HistogramTools</pkg>
<pkg>inline</pkg>
<pkg>LaF</pkg>
<pkg>latentnet</pkg>
<pkg>lga</pkg>
<pkg>Matching</pkg>
<pkg>MonetDB.R</pkg>
<pkg>nws</pkg>
<pkg>orloca</pkg>
<pkg>OpenCL</pkg>
<pkg>partDSA</pkg>
<pkg>pbapply</pkg>
<pkg>pbdBASE</pkg>
<pkg>pbdDEMO</pkg>
<pkg>pbdDMAT</pkg>
<pkg>pbdPROF</pkg>
<pkg>pbdMPI</pkg>
<pkg>pbdNCDF4</pkg>
<pkg>pbdSLAP</pkg>
<pkg>peperr</pkg>
<pkg>permGPU</pkg>
<pkg>PGICA</pkg>
<pkg>pls</pkg>
<pkg>pmclust</pkg>
<pkg>profr</pkg>
<pkg>proftools</pkg>
<pkg>pvclust</pkg>
<pkg>randomForestSRC</pkg>
<pkg>Rborist</pkg>
<pkg>Rcpp</pkg>
<pkg>RcppParallel</pkg>
<pkg>Rdsm</pkg>
<pkg>rgenoud</pkg>
<pkg>Rhpc</pkg>
<pkg>RhpcBLASctl</pkg>
<pkg>RInside</pkg>
<pkg>rJava</pkg>
<pkg>rlecuyer</pkg>
<pkg priority="core">Rmpi</pkg>
<pkg>RProtoBuf</pkg>
<pkg>rredis</pkg>
<pkg>Sim.DiffProc</pkg>
<pkg>rslurm</pkg>
<pkg priority="core">snow</pkg>
<pkg>snowfall</pkg>
<pkg>snowFT</pkg>
<pkg>speedglm</pkg>
<pkg>sprint</pkg>
<pkg>sqldf</pkg>
<pkg>STAR</pkg>
<pkg>tm</pkg>
<pkg>toaster</pkg>
<pkg>varSelRF</pkg>
</packagelist>
<links>
<a href="http://www.stat.uiowa.edu/~luke/classes/295-hpc/">HPC computing notes by Luke Tierney for HPC class at University of Iowa</a>
<a href="https://stat.ethz.ch/mailman/listinfo/r-sig-hpc/">Mailing List: R Special Interest Group High Performance Computing</a>
<a href="http://www.jstatsoft.org/v31/i01/">Schmidberger, Morgan, Eddelbuettel, Yu, Tierney and Mansmann (2009) paper on 'State of the Art in Parallel Computing with R'</a>
<a href="http://www.stat.uiowa.edu/~luke/R/experimental/">Luke Tierney's code directory for pnmath and pnmath0</a>
<rforge>biocep-distrib</rforge>
<bioc>affyPara</bioc>
<bioc>maanova</bioc>
<bioc>multtest</bioc>
<bioc>puma</bioc>
<gcode>romp</gcode>
<gcode>bugsparallel</gcode>
<a href="http://slurm.schedmd.com/">Slurm open-source workload manager</a>
<a href="http://www.cs.wisc.edu/condor/">Condor project at University of Wisconsin-Madison</a>
<a href="http://www.imbi.uni-freiburg.de/parallel/">Parallel Computing in R with sfCluster/snowfall</a>
<a href="http://en.wikipedia.org/wiki/Message_Passing_Interface">Wikipedia: Message Passing Interface (MPI)</a>
<a href="http://en.wikipedia.org/wiki/Parallel_Virtual_Machine">Wikipedia: Parallel Virtual Machine (PVM)</a>
<a href="http://dirk.eddelbuettel.com/papers/ismNov2009introHPCwithR.pdf">Slides from Introduction to High-Performance Computing with R tutorial help in Nov 2009 at the Institute for Statistical Mathematics, Tokyo, Japan</a>
<a href="https://gforge.nbic.nl/projects/rgpu/">rgpu project at nbic.nl</a>
<a href="http://icl.cs.utk.edu/magma/">Magma: Matrix Algebra on GPU and Multicore architectures</a>
<a href="http://shop.oreilly.com/product/0636920021421.do">Parallel R: Data Analysis in the Distributed World"</a>
<a href="https://snoweye.github.io/hpsc/">High Performance Statistical Computing for Data Intensive Research</a>
<a href="http://heather.cs.ucdavis.edu/~matloff/rth.html">Rth: Parallel R through Thrust</a>
<a href="http://r-pbd.org">Programming with Big Data in R</a>
<a href="https://github.com/saptarshiguha/RHIPE/">RHIPE</a>
<!-- <a href="http://www.bayesian-inference.com/software">LaplacesDemon</a> -->
<a href="https://github.com/ljdursi/beyond-single-core-R">Beyond Single Core: Parallel Analysis in R</a>
<a href="https://github.com/eddelbuettel/ctv-hpc">GitHub repository for this Task View</a>
</links>
</CRANTaskView>