-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathhesaff.h
223 lines (188 loc) · 8.44 KB
/
hesaff.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
#ifndef HESAFF_H
#define HESAFF_H
#include <algorithm>
#include <fstream>
#include <cmath>
#include "abstractdetector.h"
#include "intimage.h"
class HesAff : public AbstractDetector {
public:
HesAff();
virtual ~HesAff();
private:
int numb;
float thresh;
//float sigma;
static const int MaxOctaves;
static const int SCALES;
static const float _SIGMA;
static const bool INTERP_KEYS;
static const float INITSIGMA;
static bool ZOOM_OUT;
static bool LOGON;
static bool useD1L; // 是否使用 D1L>0作为辅助阈值
static bool useThresh; // 函数值是否要大于阈值
static const float D1L_ALPHA; // <Image Matching Using Generalized Scale-Space Interest Points> Tony Lindeberg
//for detector
private:
static const int BORDER; // keypoints必须在图片的BORDER以内
static const int THRESH; // Hessian行列式的阈值
static const float mag; // integration scale = mag*derivative scale
// FindOrientByGrad 中 生成直方图的参数
static const int DEGREE; // 方向直方图中每一柱的角度范围, 共有360/DEGREE柱
static const int NOrient;
static const int DEGPERBIN;
static const float NwKpThresh;
// adapt affine 用到的参数
static const int maxAdaptIter; // 允许的最大迭代次数
static const float EPSILON; // 浮点数最小精度
vector<Image *> octave;
vector<vector<Image*> > pyramid;
vector<vector<Image*> > dxxPyramid, dyyPyramid, dxyPyramid;
Image *CreateInitialImage(Image *crntImg);
void BuildGaussianPyramid(Image *initImg, vector<vector<Image*> > &pyramid, const float sigma0, const int numScales);
void BuildHessianPyramid(vector<vector<Image*> > &gaussPyramid, vector<vector<Image*> > &hessPyramid, vector<vector<Image*> > &D1LPPyramid);
void BuildHessianImage(Image *src, float sigma, Image *&hessImg, Image *&D1LImg);
///void BuildHessianImage(Image *src, float sigma, Image *&hessImg, Image *&D1LImg, Image *&DxxImg, Image *&DxyImg, Image *&DyyImg);
void FindKeypoints(const int octIndex, vector<Image *> &hessOctave, vector<Image *> &D1Loctave, vector<KeyPoint *> &peaks);
KeyPoint *FindKeypointNearby(Image *hessImg, Image *D1LImg, const int cx, const int cy, const int size);
bool InterpKey(int x, int y, int s, vector<Image *> &LoGImages, float *fx, float *fy, float *fs, float *dogVal);
float InterpKeyStep(int x, int y, int s, vector<Image *> &DI, float *dx, float *dy, float *ds);
vector<KeyPoint*> FindOrientByGrad(vector<KeyPoint *> &kps, vector<vector<Image *> > & GaussianOctaves);
void affineAdapt(vector<KeyPoint *> &peaks, vector<vector<Image*> > &gaussPyramid, vector<vector<Image*> > &dxPyramid, vector<vector<Image*> > &dyPyramid);
void affineAdapt2D(vector<KeyPoint *> &peaks, vector<vector<Image*> > &gaussPyramid);
Image *normalizeWindow(Image *window, float sqrtU[2][2], int cx, int cy);
void buildDxPyramid(vector<vector<Image*> > &gaussianPyramid, vector<vector<Image*> > &DxPyramid);
void buildDyPyramid(vector<vector<Image*> > &gaussianPyramid, vector<vector<Image*> > &DyPyramid);
void buildDxImage(Image *src, Image *dxImg);
void buildDyImage(Image *src, Image *dyImg);
void cal2ndMomentMat(Image *window, const int x, const int y, const float dscale, const float iscale, float u[2][2]);
void saveKeypoints(const string dstFn, vector<KeyPoint *> kps)
{
vector<KeyPoint*>::iterator it;
KeyPoint* kp = NULL;
stable_sort(kps.begin(), kps.end(), KeyPoint::keypCompF);
FILE *fp = fopen(dstFn.c_str(), "w");
for(it = kps.begin(); it != kps.end(); it++)
{
kp = *it;
std::fprintf(fp, "%d %d %.4f %.4f %.4f %.4f %.4f\n",
kp->x, kp->y, kp->dscale, kp->a, kp->b, kp->c, kp->funcVal);
}
fclose(fp);
}
public:
// (cx,cy)是否是(x,y,s)空间上的局部极值
static bool isLocalExtrema(const Image *prevImg, const Image *img, const Image *nextImg, const int cx, const int cy);
// (cx,cy)是否是(x,y)空间上的局部极值
static bool isLocalExtrema(const Image *img, const int cx, const int cy);
// 2*2矩阵的行列式
static inline float det2D(float m[2][2]) {
return m[0][0] * m[1][1] - m[0][1] * m[1][0];
}
// Scale-Space Behaviour of Local Extrema and Blobs,equation(7)
// 根据隐函数定理求trajectory关于sigma的导数
// 但是论文中有一项错了,-LxyLxxx应该改一个变成-LxyLxyy
static bool getdRds(const float block[5][5], const float sigma, float &dxds, float &dyds);
static float getdHds(const float block[5][5], float sigma);
// 2*2矩阵的特征值
static inline bool Eigenvalue2D(float m[2][2], float &eig1, float &eig2) {
// 解方程(a-eig1)(d-eig2)-bc=0
float a = 1, b = -(m[0][0] + m[1][1]), c = m[0][0] * m[1][1] - m[0][1] * m[1][0];
float delta = b * b - 4 * a * c;
if (delta < -EPSILON)
return false;
else {
if (delta < 0) delta = -delta;
float sqrtDelta = sqrt(delta);
eig1 = (-b - sqrtDelta) / (2 * a);
eig2 = (-b + sqrtDelta) / (2 * a);
return true;
}
}
// 2*2矩阵的逆
static inline bool Inverse2D(float m[2][2], float invm[2][2]) {
float det = det2D(m);
if (fabs(det) > EPSILON) {
float divDet = 1 / det;
invm[0][0] = divDet * m[1][1];
invm[0][1] = -divDet * m[0][1];
invm[1][0] = -divDet * m[1][0];
invm[1][1] = divDet * m[0][0];
return true;
} else
return false;
}
static inline bool Inverse2D(float m[2][2]) {
float det = det2D(m);
if (fabs(det) > EPSILON) {
float divDet = 1 / det;
float a = m[0][0];
m[0][0] = divDet * m[1][1];
m[0][1] = -divDet * m[0][1];
m[1][0] = -divDet * m[1][0];
m[1][1] = divDet * a;
return true;
} else
return false;
}
// 2*2矩阵的平方根, 只计算出实根
// https://en.wikipedia.org/wiki/Square_root_of_a_2_by_2_matrix
static inline bool SqrtMatrix2D(float m[2][2], float mr[2][2]) {
float det = det2D(m);
if (det > EPSILON) {
det = sqrt(det);
float t = m[0][0] + m[1][1] + 2 * det;
if (t > EPSILON) {
t = 1 / sqrt(t);
mr[0][0] = t * (m[0][0] + det);
mr[0][1] = t * m[0][1];
mr[1][0] = t * m[1][0];
mr[1][1] = t * (m[1][1] + det);
return true;
}
}
return false;
}
// 将initImg的[x1~x2, y1~y2]部分切割出来并返回
static inline Image *ImageCut(Image *initImg, int x1, int x2, int y1, int y2) {
int width = x2 - x1 + 1, height = y2 - y1 + 1;
Image *newImg = new Image(width, height);
for (int i = 0; i < width; i++)
for (int j = 0; j < height; j++)
newImg->setPixel(i, j, initImg->getPixel(x1 + i, y1 + j));
return newImg;
}
// 返回x的符号 正数1 负数-1 0
static inline int Sign(const float x) { return (fabs(x) < EPSILON ? 0 : (x < -EPSILON ? -1 : 1)); }
// 计算window(cx,cy,sigma)的det(H)对sigma的导数
static float getdHds(const Image *window, const int cx, const int cy, const float sigma);
// 计算normalized det(Hessian(cx, cy, sigma))
static float getDetH(const Image *window, const int cx, const int cy, const float sigma);
// m1矩阵右乘m2
inline static void MultiplyMatrix(float m1[2][2], float m2[2][2]) {
float a = m1[0][0] * m2[0][0] + m1[0][1] * m2[1][0];
float b = m1[0][0] * m2[0][1] + m1[0][1] * m2[1][1];
float c = m1[1][0] * m2[0][0] + m1[1][1] * m2[1][0];
float d = m1[1][0] * m2[0][1] + m1[1][1] * m2[1][1];
m1[0][0] = a;
m1[0][1] = b;
m1[1][0] = c;
m1[1][1] = d;
}
// m/sqrt(det(m))
inline static void Normalize(float m[2][2]) {
float v = 1 / sqrt(det2D(m));
m[0][0] *= v;
m[0][1] *= v;
m[1][0] *= v;
m[1][1] *= v;
}
public:
bool paramsCheck();
bool KeypointBuild(const char *fn, const char *dstfn, const char *descfn, const char *dvfn);
void writeKeypoint(const char *fn);
void extractKeyp(string imgPath);
static void test();
};
#endif // HESAFF_H