diff --git a/UniTrain/dataset/DCGAN.py b/UniTrain/dataset/DCGAN.py new file mode 100644 index 0000000..7f0a208 --- /dev/null +++ b/UniTrain/dataset/DCGAN.py @@ -0,0 +1,37 @@ +import os +import glob +from PIL import Image +import torch +from torch.utils.data import Dataset + +class DCGANdataset: + def __init__(self, data_dir, transform=None): + self.data_dir = data_dir + self.transform = transform + self.classes = os.listdir(data_dir) + self.class_to_idx = {cls: idx for idx, cls in enumerate(self.classes)} + self.data = self.load_data() + + def load_data(self): + data = [] + for cls in self.classes: + class_path = os.path.join(self.data_dir, cls) + class_idx = self.class_to_idx[cls] + # Include .jpg, .jpeg, and .png extensions in the glob pattern + for file_path in glob.glob(os.path.join(class_path, '*.jpg')) + \ + glob.glob(os.path.join(class_path, '*.jpeg')) + \ + glob.glob(os.path.join(class_path, '*.png')): + data.append((file_path, class_idx)) + return data + + def __len__(self): + return len(self.data) + + def __getitem__(self, idx): + img_path, target = self.data[idx] + image = Image.open(img_path).convert('RGB') + + if self.transform is not None: + image = self.transform(image) + + return image, target diff --git a/UniTrain/dataset/__init__.py b/UniTrain/dataset/__init__.py index 646803e..dd44579 100644 --- a/UniTrain/dataset/__init__.py +++ b/UniTrain/dataset/__init__.py @@ -1,2 +1,3 @@ from .classification import ClassificationDataset -from .segmentation import SegmentationDataset \ No newline at end of file +from .segmentation import SegmentationDataset +from .DCGAN import DCGANdataset \ No newline at end of file diff --git a/UniTrain/dataset/segmentation.py b/UniTrain/dataset/segmentation.py index 683ac2d..d932161 100644 --- a/UniTrain/dataset/segmentation.py +++ b/UniTrain/dataset/segmentation.py @@ -35,5 +35,4 @@ def __getitem__(self, index): # You may need to further preprocess the mask if required # Example: Convert mask to tensor and perform class mapping - return image, mask diff --git a/UniTrain/models/DCGAN.py b/UniTrain/models/DCGAN.py new file mode 100644 index 0000000..f15ee4d --- /dev/null +++ b/UniTrain/models/DCGAN.py @@ -0,0 +1,71 @@ +from torchsummary import summary +import torch.nn as nn + + +class disc(nn.Module): + + discriminator = nn.Sequential( + # in: 3 x 64 x 64 + + # Layer 01 : Converts a 3 Channel Image to a 64 Channel Image (FEATURE MAP) + nn.Conv2d(3, 64, kernel_size=4, stride=2, padding=1, bias=False), + nn.BatchNorm2d(64), + nn.LeakyReLU(0.2, inplace=True), + # out: 64 x 32 x 32 + + nn.Conv2d(64, 128, kernel_size=4, stride=2, padding=1, bias=False), + nn.BatchNorm2d(128), + nn.LeakyReLU(0.2, inplace=True), + # out: 128 x 16 x 16 + + nn.Conv2d(128, 256, kernel_size=4, stride=2, padding=1, bias=False), + nn.BatchNorm2d(256), + nn.LeakyReLU(0.2, inplace=True), + # out: 256 x 8 x 8 + + nn.Conv2d(256, 512, kernel_size=4, stride=2, padding=1, bias=False), + nn.BatchNorm2d(512), + nn.LeakyReLU(0.2, inplace=True), + # out: 512 x 4 x 4 + + nn.Conv2d(512, 1, kernel_size=4, stride=1, padding=0, bias=False), + # out: 1 x 1 x 1 + + + nn.Flatten(), + nn.Sigmoid() + + ) + + +class gen(nn.Module): + + latent_size = 128 + + generator = nn.Sequential( + # in: latent_size x 1 x 1 + + nn.ConvTranspose2d(latent_size, 512, kernel_size=4, stride=1, padding=0, bias=False), + nn.BatchNorm2d(512), + nn.ReLU(True), + # out: 512 x 4 x 4 + + nn.ConvTranspose2d(512, 256, kernel_size=4, stride=2, padding=1, bias=False), + nn.BatchNorm2d(256), + nn.ReLU(True), + # out: 256 x 8 x 8 + + nn.ConvTranspose2d(256, 128, kernel_size=4, stride=2, padding=1, bias=False), + nn.BatchNorm2d(128), + nn.ReLU(True), + # out: 128 x 16 x 16 + + nn.ConvTranspose2d(128, 64, kernel_size=4, stride=2, padding=1, bias=False), + nn.BatchNorm2d(64), + nn.ReLU(True), + # out: 64 x 32 x 32 + + nn.ConvTranspose2d(64, 3, kernel_size=4, stride=2, padding=1, bias=False), + nn.Tanh() + # out: 3 x 64 x 64 + ) \ No newline at end of file diff --git a/UniTrain/models/__init__.py b/UniTrain/models/__init__.py index 1869e72..b26aa14 100644 --- a/UniTrain/models/__init__.py +++ b/UniTrain/models/__init__.py @@ -1,2 +1,3 @@ from .classification import ResNet9 -from .segmentation import UNet \ No newline at end of file +from .segmentation import UNet +from .DCGAN import * \ No newline at end of file diff --git a/UniTrain/utils/DCGAN.py b/UniTrain/utils/DCGAN.py new file mode 100644 index 0000000..eb0b03c --- /dev/null +++ b/UniTrain/utils/DCGAN.py @@ -0,0 +1,420 @@ +import torch.nn as nn +from torch.utils.data import DataLoader +from torchvision.datasets import ImageFolder +import torchvision.transforms as T +import torch +import os +from torchvision.utils import make_grid +import matplotlib.pyplot as plt +from torchvision.utils import save_image +from UniTrain.dataset.DCGAN import DCGANdataset +import torch.nn as nn +from torch.utils.data import DataLoader +from torchvision.datasets import ImageFolder +import torchvision.transforms as T +import torch +import os +from torchvision.utils import make_grid +import matplotlib.pyplot as plt +from torchvision.utils import save_image +from tqdm.notebook import tqdm +import torch.nn.functional as F + + +latent_size = 128 +stats = (0.5, 0.5, 0.5), (0.5, 0.5, 0.5) + +def denorm(img_tensors): + return img_tensors * stats[1][0] + stats[0][0] + +def get_data_loader(data_dir, batch_size, shuffle=True, transform = None, split='real'): + """ + Create and return a data loader for a custom dataset. + + Args: + data_dir (str): Path to the dataset directory. + batch_size (int): Batch size for the data loader. + shuffle (bool): Whether to shuffle the data (default is True). + + Returns: + DataLoader: PyTorch data loader. + """ + + # Define data transformations (adjust as needed) + if split == 'real': + data_dir = os.path.join(data_dir, 'real_images') + else: + raise ValueError(f"Invalid split choice: {split}") + + image_size = 64 + batch_size = 128 + stats = (0.5, 0.5, 0.5), (0.5, 0.5, 0.5) + + if transform is None: + transform=T.Compose([T.Resize(image_size), T.CenterCrop(image_size),T.ToTensor(),T.Normalize(*stats)]) + + # Create a custom dataset + dataset = DCGANdataset(data_dir, transform=transform) + + # Create a data loader + print(batch_size) + data_loader = DataLoader( + dataset, + batch_size=batch_size, + shuffle=shuffle + ) + + return data_loader + + +def parse_folder(dataset_path): + print(dataset_path) + print(os.getcwd()) + print(os.path.exists(dataset_path)) + try: + if os.path.exists(dataset_path): + # Store paths to train, test, and eval folders if they exist + real_path = os.path.join(dataset_path, 'real_images') + + if os.path.exists(real_path) : + print("Real Data folder path:", real_path) + + real_classes = set(os.listdir(real_path)) + + if real_classes: + return real_classes + else: + print("Real Data Set is empty") + return None + else: + print("One or more of the train, test, or eval folders does not exist.") + return None + else: + print(f"The '{dataset_path}' folder does not exist in the current directory.") + return None + except Exception as e: + print("An error occurred:", str(e)) + return None + +def train_discriminator(discriminator, generator, real_images, opt_d, batch_size, latent_size, device): + opt_d.zero_grad() + + + print(real_images.shape) + real_preds = discriminator(real_images) + print(real_preds.shape) + real_targets = torch.ones(real_images.size(0), 1, device=device) + real_loss = F.binary_cross_entropy(real_preds, real_targets) + real_score = torch.mean(real_preds).item() + + # Generate fake images + latent = torch.randn(batch_size, latent_size, 1, 1, device=device) + fake_images = generator(latent) + # Pass fake images through discriminator + fake_targets = torch.zeros(fake_images.size(0), 1, device=device) + fake_preds = discriminator(fake_images) + fake_loss = F.binary_cross_entropy(fake_preds, fake_targets) + fake_score = torch.mean(fake_preds).item() + + # Update discriminator weights + loss = real_loss + fake_loss + loss.backward() + opt_d.step() + return loss.item(), real_score, fake_score + + +def train_generator(opt_g, discriminator, generator, batch_size, device): + # Clear generator gradients + opt_g.zero_grad() + + # Generate fake images + latent = torch.randn(batch_size, latent_size, 1, 1, device=device) + fake_images = generator(latent) + + # Try to fool the discriminator + preds = discriminator(fake_images) + targets = torch.ones(batch_size, 1, device=device) + loss = F.binary_cross_entropy(preds, targets) + + # Update generator weights + loss.backward() + opt_g.step() + + return loss.item() + +generated_dir = 'generated' +os.makedirs(generated_dir, exist_ok=True) + +def save_samples(index, generator_model, latent_tensors, show=True): + fake_images = generator_model(latent_tensors) + fake_fname = 'generated-images-{0:0=4d}.png'.format(index) + save_image(denorm(fake_images), os.path.join(generated_dir, fake_fname), nrow=8) + print('Saving', fake_fname) + if show: + fig, ax = plt.subplots(figsize=(8, 8)) + ax.set_xticks([]); ax.set_yticks([]) + ax.imshow(make_grid(fake_images.cpu().detach(), nrow=8).permute(1, 2, 0)) + + +def train_model(discriminator_model, generator_model, train_data_loader , batch_size, epochs, learning_rate, checkpoint_dir , device= torch.device('cpu') ,logger=None, iou=False, ): + + os.makedirs(checkpoint_dir + "/discriminator_checkpoint" , exist_ok=True) + os.makedirs(checkpoint_dir + "/generator_checkpoint" , exist_ok=True) + + fixed_latent = torch.randn(128, latent_size, 1, 1, device=device) + + # Losses & scores + losses_g = [] + losses_d = [] + real_scores = [] + fake_scores = [] + + # Create optimizers + opt_d = torch.optim.Adam(discriminator_model.parameters(), lr=learning_rate, betas=(0.5, 0.999)) + opt_g = torch.optim.Adam(generator_model.parameters(), lr=learning_rate, betas=(0.5, 0.999)) + + # e = 0 + for epoch in range(epochs): + i=0 + for real_images, _ in tqdm(train_data_loader): + # Train discriminator + print('epochs',epoch,'image',i) + i=i+1 + loss_d, real_score, fake_score = train_discriminator(discriminator_model, generator_model, real_images, opt_d,128,128, device='cpu' ) + # Train generator + loss_g = train_generator(opt_g, discriminator_model, generator_model, batch_size, device='cpu') + + # Record losses & scores + losses_g.append(loss_g) + losses_d.append(loss_d) + real_scores.append(real_score) + fake_scores.append(fake_score) + + # Save generated images + save_samples(epoch+epoch,generator_model , fixed_latent, show=False) + + print('Finished Training') + +def evaluate_model(discriminator_model, dataloader): + discriminator_model.eval() # Set the model to evaluation mode + correct = 0 + total = 0 + + with torch.no_grad(): + for inputs, labels in dataloader: + outputs = discriminator_model(inputs) + _, predicted = torch.max(outputs.data, 1) + total += labels.size(0) + correct += (predicted == labels).sum().item() + + accuracy = 100 * correct / total + + return accuracy + + + +from tqdm.notebook import tqdm +# from tqdm.notebook import tqdm +import torch.nn.functional as F +# %matplotlib inline + +latent_size = 128 +stats = (0.5, 0.5, 0.5), (0.5, 0.5, 0.5) + +def denorm(img_tensors): + return img_tensors * stats[1][0] + stats[0][0] + +def get_data_loader(data_dir, batch_size, shuffle=True, transform = None, split='real'): + """ + Create and return a data loader for a custom dataset. + + Args: + data_dir (str): Path to the dataset directory. + batch_size (int): Batch size for the data loader. + shuffle (bool): Whether to shuffle the data (default is True). + + Returns: + DataLoader: PyTorch data loader. + """ + # Define data transformations (adjust as needed) + + if split == 'real': + data_dir = os.path.join(data_dir, 'real_images') + else: + raise ValueError(f"Invalid split choice: {split}") + + image_size = 64 + batch_size = 128 + stats = (0.5, 0.5, 0.5), (0.5, 0.5, 0.5) + + if transform is None: + transform=T.Compose([T.Resize(image_size), T.CenterCrop(image_size),T.ToTensor(),T.Normalize(*stats)]) + + # Create a custom dataset + dataset = DCGANdataset(data_dir, transform=transform) + + # Create a data loader + print(batch_size) + data_loader = DataLoader( + dataset, + batch_size=batch_size, + shuffle=shuffle + ) + + return data_loader + + + +def parse_folder(dataset_path): + print(dataset_path) + print(os.getcwd()) + print(os.path.exists(dataset_path)) + try: + if os.path.exists(dataset_path): + # Store paths to train, test, and eval folders if they exist + real_path = os.path.join(dataset_path, 'real_images') + + # if os.path.exists(real_path) and os.path.exists(test_path) and os.path.exists(eval_path): + if os.path.exists(real_path) : + print("Real Data folder path:", real_path) + + real_classes = set(os.listdir(real_path)) + + if real_classes: + return real_classes + else: + print("Real Data Set is empty") + return None + else: + print("One or more of the train, test, or eval folders does not exist.") + return None + else: + print(f"The '{dataset_path}' folder does not exist in the current directory.") + return None + except Exception as e: + print("An error occurred:", str(e)) + return None + +def train_discriminator(discriminator, generator, real_images, opt_d, batch_size, latent_size, device): + # Clear discriminator gradients + opt_d.zero_grad() + + # Pass real images through discriminator + print(real_images.shape) + real_preds = discriminator(real_images) + print(real_preds.shape) + real_targets = torch.ones(real_images.size(0), 1, device=device) + real_loss = F.binary_cross_entropy(real_preds, real_targets) + real_score = torch.mean(real_preds).item() + + # Generate fake images + latent = torch.randn(batch_size, latent_size, 1, 1, device=device) + fake_images = generator(latent) + # Pass fake images through discriminator + fake_targets = torch.zeros(fake_images.size(0), 1, device=device) + fake_preds = discriminator(fake_images) + fake_loss = F.binary_cross_entropy(fake_preds, fake_targets) + fake_score = torch.mean(fake_preds).item() + + # Update discriminator weights + loss = real_loss + fake_loss + loss.backward() + opt_d.step() + return loss.item(), real_score, fake_score + + +def train_generator(opt_g, discriminator, generator, batch_size, device): + # Clear generator gradients + opt_g.zero_grad() + + # Generate fake images + latent = torch.randn(batch_size, latent_size, 1, 1, device=device) + fake_images = generator(latent) + + # Try to fool the discriminator + preds = discriminator(fake_images) + targets = torch.ones(batch_size, 1, device=device) + loss = F.binary_cross_entropy(preds, targets) + + # Update generator weights + loss.backward() + opt_g.step() + + return loss.item() + +generated_dir = 'generated' +os.makedirs(generated_dir, exist_ok=True) + +def save_samples(index, generator_model, latent_tensors, show=True): + fake_images = generator_model(latent_tensors) + fake_fname = 'generated-images-{0:0=4d}.png'.format(index) + save_image(denorm(fake_images), os.path.join(generated_dir, fake_fname), nrow=8) + print('Saving', fake_fname) + if show: + fig, ax = plt.subplots(figsize=(8, 8)) + ax.set_xticks([]); ax.set_yticks([]) + ax.imshow(make_grid(fake_images.cpu().detach(), nrow=8).permute(1, 2, 0)) + + +def train_model(discriminator_model, generator_model, train_data_loader ,batch_size, epochs, learning_rate, checkpoint_dir,device="cpu" , logger=None, iou=False, ): + if device == 'cpu': + device = torch.device('cpu') + elif device == 'cuda': + device = torch.device('cuda') + else: + print(f"{device} is not a valid device.") + return None + + os.makedirs(checkpoint_dir + "/discriminator_checkpoint") + os.makedirs(checkpoint_dir + "/generator_checkpoint") + + fixed_latent = torch.randn(128, latent_size, 1, 1, device=device) + + # Losses & scores + losses_g = [] + losses_d = [] + real_scores = [] + fake_scores = [] + + # Create optimizers + opt_d = torch.optim.Adam(discriminator_model.parameters(), lr=learning_rate, betas=(0.5, 0.999)) + opt_g = torch.optim.Adam(generator_model.parameters(), lr=learning_rate, betas=(0.5, 0.999)) + + # e = 0 + for epoch in range(epochs): + i=0 + for real_images, _ in tqdm(train_data_loader): + # Train discriminator + print('epochs',epoch,'image',i) + i=i+1 + loss_d, real_score, fake_score = train_discriminator(discriminator_model, generator_model, real_images, opt_d,128,128, device='cpu' ) + # Train generator + loss_g = train_generator(opt_g, discriminator_model, generator_model, batch_size, device='cpu') + + # Record losses & scores + losses_g.append(loss_g) + losses_d.append(loss_d) + real_scores.append(real_score) + fake_scores.append(fake_score) + + # Save generated images + save_samples(epoch+epoch,generator_model , fixed_latent, show=False) + + print('Finished Training') + +def evaluate_model(discriminator_model, dataloader): + discriminator_model.eval() # Set the model to evaluation mode + correct = 0 + total = 0 + + with torch.no_grad(): + for inputs, labels in dataloader: + outputs = discriminator_model(inputs) + _, predicted = torch.max(outputs.data, 1) + total += labels.size(0) + correct += (predicted == labels).sum().item() + + accuracy = 100 * correct / total + + return accuracy + diff --git a/UniTrain/utils/__init__.py b/UniTrain/utils/__init__.py index d2a393e..5a151d3 100644 --- a/UniTrain/utils/__init__.py +++ b/UniTrain/utils/__init__.py @@ -1,2 +1,3 @@ from .classification import get_data_loader, parse_folder, train_model -from .segmentation import get_data_loader, parse_folder, train_unet, generate_model_summary, iou_score \ No newline at end of file +from .segmentation import get_data_loader, parse_folder, train_unet, generate_model_summary, iou_score +from .DCGAN import get_data_loader, parse_folder , train_model \ No newline at end of file