forked from Kent0n-Li/ChatDoctor
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
174 lines (150 loc) · 6.35 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
import dataclasses
import logging
import math
import os
import io
import sys
import time
import json
from typing import Optional, Sequence, Union
import openai
import tqdm
from openai import openai_object
import copy
StrOrOpenAIObject = Union[str, openai_object.OpenAIObject]
openai.api_key =''
openai_org = os.getenv("OPENAI_ORG")
if openai_org is not None:
openai.organization = openai_org
logging.warning(f"Switching to organization: {openai_org} for OAI API key.")
@dataclasses.dataclass
class OpenAIDecodingArguments(object):
max_tokens: int = 1800
temperature: float = 0.2
top_p: float = 1.0
n: int = 1
stream: bool = False
stop: Optional[Sequence[str]] = None
presence_penalty: float = 0.0
frequency_penalty: float = 0.0
suffix: Optional[str] = None
logprobs: Optional[int] = None
echo: bool = False
def openai_completion(
prompts: Union[str, Sequence[str], Sequence[dict[str, str]], dict[str, str]],
decoding_args: OpenAIDecodingArguments,
model_name="text-davinci-003",
sleep_time=2,
batch_size=1,
max_instances=sys.maxsize,
max_batches=sys.maxsize,
return_text=False,
**decoding_kwargs,
) -> Union[Union[StrOrOpenAIObject], Sequence[StrOrOpenAIObject], Sequence[Sequence[StrOrOpenAIObject]],]:
"""Decode with OpenAI API.
Args:
prompts: A string or a list of strings to complete. If it is a chat model the strings should be formatted
as explained here: https://github.com/openai/openai-python/blob/main/chatml.md. If it is a chat model
it can also be a dictionary (or list thereof) as explained here:
https://github.com/openai/openai-cookbook/blob/main/examples/How_to_format_inputs_to_ChatGPT_models.ipynb
decoding_args: Decoding arguments.
model_name: Model name. Can be either in the format of "org/model" or just "model".
sleep_time: Time to sleep once the rate-limit is hit.
batch_size: Number of prompts to send in a single request. Only for non chat model.
max_instances: Maximum number of prompts to decode.
max_batches: Maximum number of batches to decode. This argument will be deprecated in the future.
return_text: If True, return text instead of full completion object (which contains things like logprob).
decoding_kwargs: Additional decoding arguments. Pass in `best_of` and `logit_bias` if you need them.
Returns:
A completion or a list of completions.
Depending on return_text, return_openai_object, and decoding_args.n, the completion type can be one of
- a string (if return_text is True)
- an openai_object.OpenAIObject object (if return_text is False)
- a list of objects of the above types (if decoding_args.n > 1)
"""
is_single_prompt = isinstance(prompts, (str, dict))
if is_single_prompt:
prompts = [prompts]
if max_batches < sys.maxsize:
logging.warning(
"`max_batches` will be deprecated in the future, please use `max_instances` instead."
"Setting `max_instances` to `max_batches * batch_size` for now."
)
max_instances = max_batches * batch_size
prompts = prompts[:max_instances]
num_prompts = len(prompts)
prompt_batches = [
prompts[batch_id * batch_size : (batch_id + 1) * batch_size]
for batch_id in range(int(math.ceil(num_prompts / batch_size)))
]
completions = []
for batch_id, prompt_batch in tqdm.tqdm(
enumerate(prompt_batches),
desc="prompt_batches",
total=len(prompt_batches),
):
batch_decoding_args = copy.deepcopy(decoding_args) # cloning the decoding_args
while True:
try:
shared_kwargs = dict(
model=model_name,
**batch_decoding_args.__dict__,
**decoding_kwargs,
)
completion_batch = openai.Completion.create(prompt=prompt_batch, **shared_kwargs)
choices = completion_batch.choices
for choice in choices:
choice["total_tokens"] = completion_batch.usage.total_tokens
completions.extend(choices)
break
except openai.error.OpenAIError as e:
logging.warning(f"OpenAIError: {e}.")
if "Please reduce your prompt" in str(e):
batch_decoding_args.max_tokens = int(batch_decoding_args.max_tokens * 0.8)
logging.warning(f"Reducing target length to {batch_decoding_args.max_tokens}, Retrying...")
else:
logging.warning("Hit request rate limit; retrying...")
time.sleep(sleep_time) # Annoying rate limit on requests.
if return_text:
completions = [completion.text for completion in completions]
if decoding_args.n > 1:
# make completions a nested list, where each entry is a consecutive decoding_args.n of original entries.
completions = [completions[i : i + decoding_args.n] for i in range(0, len(completions), decoding_args.n)]
if is_single_prompt:
# Return non-tuple if only 1 input and 1 generation.
(completions,) = completions
return completions
def _make_w_io_base(f, mode: str):
if not isinstance(f, io.IOBase):
f_dirname = os.path.dirname(f)
if f_dirname != "":
os.makedirs(f_dirname, exist_ok=True)
f = open(f, mode=mode)
return f
def _make_r_io_base(f, mode: str):
if not isinstance(f, io.IOBase):
f = open(f, mode=mode)
return f
def jdump(obj, f, mode="w", indent=4, default=str):
"""Dump a str or dictionary to a file in json format.
Args:
obj: An object to be written.
f: A string path to the location on disk.
mode: Mode for opening the file.
indent: Indent for storing json dictionaries.
default: A function to handle non-serializable entries; defaults to `str`.
"""
f = _make_w_io_base(f, mode)
if isinstance(obj, (dict, list)):
json.dump(obj, f, indent=indent, default=default)
elif isinstance(obj, str):
f.write(obj)
else:
raise ValueError(f"Unexpected type: {type(obj)}")
f.close()
def jload(f, mode="r"):
"""Load a .json file into a dictionary."""
f = _make_r_io_base(f, mode)
jdict = json.load(f)
f.close()
return jdict