Skip to content

Latest commit

 

History

History
111 lines (105 loc) · 4.2 KB

README.md

File metadata and controls

111 lines (105 loc) · 4.2 KB

Is MultiWOZ a Solved Task? An Interactive TOD Evaluation Framework with User Simulator

Accepted by the findings of EMNLP2022.

Data Preprocess

Our experiments mainly focus on MultiWOZ 2.0. You should unzip the data.zip at first:

cd data
unzip data.zip

and then run this script:

python preprocess.py -version 2.0

Supervised Learning

Seq-to-seq training based on t5 models (simplified version of MTTOD).

User Simulator Supvervised Training

python main.py -version 2.0 -agent_type us -run_type train -ururu -backbone t5-small -model_dir simulator_t5_small -epoch 20

Dialogue System Supervised Training

python main.py -version 2.0 -agent_type ds -run_type train -ururu -backbone t5-small -model_dir dialogue_t5_small -epoch 20

Interaction

Conduct interactions between a user simulator and a dialogue system (either SL-based models or RL-based models). Generate dialogue sessions based on user goals from test or dev set. This script can be used for different dialogue models(mttod, ubar, pptod).

python interact.py -simulator_path ./your_simulator_model_dir/checkpoint -dialog_sys_path ./your_dialogue_model_dir/your_checkpoint -model_name mttod -generate_results_path output.json

Reinforcement Learning

Using success rates as rewards

python interact.py -do_rl_training -seed 1998 -simulator_save_path simulator_rl -dialog_save_path dialog_rl

Using success rates and sentence-score as rewards

python interact.py -do_rl_training -seed 1998 -simulator_save_path simulator_rl -dialog_save_path dialog_rl -use_gpt_score_as_reward -gpt_score_coef 0.1

Using success rates and sessions-score as rewards

python interact.py -do_rl_training -seed 1998 -simulator_save_path simulator_rl -dialog_save_path dialog_rl -use_nsp_score_as_reward -nsp_coef 0.1

Score Training

Sentence Score Training

python train_lm.py -model_dir sentence_score_model -task ppl -ppl_level bart_score -backbone gpt2

Sentence Score Evaluation

python train_lm.py -ckpt ./sentence_score_model/checkpoint -run_type predict -task ppl -ppl_level bart_score

Session Score Training

python train_lm.py -model_dir session_score_model -task nsp -backbone bert-base-uncased

Session Score Evaluation

python train_lm.py -ckpt ./session_score_model/checkpoint -run_type predict -task nsp

Evaluation

Traditional Evaluation

Computing Inform, Success and BLEU Score.

python main.py -run_type predict -predict_agent_type ds -ckpt ./dialogue_t5_small/checkpoint -output inference.json -batch_size 16

Computing BLEU Score(For evaluation of simulators).

python main.py -run_type predict -predict_agent_type us -ckpt ./simulator_t5_small/checkpoint -output inference.json -batch_size 16

Interactive Evaluation

First generate dialogue by interactions between a user simulator and a dialogue system. Then computing Inform, Success, Sentence-Score and Session-Score.

python compute_all_scores.py -output_result_path output.json -config_dir dialogue_t5_small -eval_type online -lm_ckpt ./your_sentence_score_model/checkpoint -nsp_ckpt ./your_session_score_model/checkpoint

If the result is generated by traditional evaluation, you should convert its format to online format at first using:

python convert_offline_to_online_format.py -offline_path traditional_results.json -online_path traditional_results_online_format.json

Different Models

UBAR Training

python ubar.py --backbone distilgpt2 --run_type train --model_dir ubar_model 

UBAR Evaluation

python ubar.py --ckpt ./ubar_model/checkpoint --run_type predict --pred_data_type test

PPTOD Training

python pptod.py --backbone pptod_small --run_type train --model_dir pptod_model

PPTOD Evaluation

python pptod.py --ckpt ./pptod_model/checkpoint --run_type predict --pred_data_type test