-
Notifications
You must be signed in to change notification settings - Fork 3
/
pptod.py
441 lines (348 loc) · 19.8 KB
/
pptod.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
import os
import torch
import random
import argparse
import numpy as np
from tqdm import tqdm
from torch.utils.data import Dataset, DataLoader
from itertools import chain
from transformers import T5ForConditionalGeneration, T5Tokenizer
from torch.nn.utils.rnn import pad_sequence
from evaluator import MultiWozEvaluator
from reader import MultiWOZReader, MultiWOZIterator
from utils.utils import get_or_create_logger, save_json
from utils import definitions
from runner import BaseRunner
logger = get_or_create_logger(__name__)
class MultiWOZDatasetPPTOD(Dataset):
def __init__(self, original_data, data_type, tokenizer, bs_prefix_id, da_prefix_id, nlg_prefix_id, sos_context_token_id, eos_context_token_id) -> None:
super().__init__()
self.data_type = data_type
self.tokenizer = tokenizer
self.bs_prefix_id = bs_prefix_id
self.da_prefix_id = da_prefix_id
self.nlg_prefix_id = nlg_prefix_id
self.sos_context_token_id = sos_context_token_id
self.eos_context_token_id = eos_context_token_id
self.data = self.construct_data(original_data)
def constraint_history_length(self, dialog_history, additional_token_num=2):
context = dialog_history[:]
context_len = sum([len(t) for t in context]) + additional_token_num
while context_len > self.tokenizer.model_max_length:
context_len -= len(context[0])
context.pop(0)
context = list(chain(*context))
return context
def construct_data(self, original_data):
'''
transform session data into turn data
'''
data_list = []
for dial in original_data:
dialog_history = []
for turn in dial:
dialog_history.append(turn['user'])
context_for_bs = self.constraint_history_length(dialog_history, 2 + len(self.bs_prefix_id))
context_for_da = self.constraint_history_length(dialog_history, 2 + len(self.da_prefix_id) + len(turn['dbpn']))
context_for_nlg = self.constraint_history_length(dialog_history, 2 + len(self.nlg_prefix_id) + len(turn['dbpn']))
bs_input = self.bs_prefix_id + [self.sos_context_token_id] + context_for_bs + [self.eos_context_token_id]
bs_output = turn['bspn'] + [self.tokenizer.eos_token_id]
da_input = self.da_prefix_id + [self.sos_context_token_id] + context_for_da + [self.eos_context_token_id] + turn['dbpn']
da_output = turn['aspn'] + [self.tokenizer.eos_token_id]
nlg_input = self.nlg_prefix_id + [self.sos_context_token_id] + context_for_nlg + [self.eos_context_token_id] + turn['dbpn']
nlg_output = turn['redx'] + [self.tokenizer.eos_token_id]
dialog_history.append(turn['redx'])
data_list.extend([(bs_input, bs_output), (da_input, da_output), (nlg_input, nlg_output)])
return data_list
def __len__(self):
return len(self.data)
def __getitem__(self, index):
return self.data[index][0], self.data[index][1]
class PPTODReader(MultiWOZReader):
def __init__(self, cfg, version):
super().__init__(cfg, version)
def init_tokenizer(self):
if self.cfg.ckpt is not None:
return T5Tokenizer.from_pretrained(self.cfg.ckpt)
elif self.cfg.train_from is not None:
return T5Tokenizer.from_pretrained(self.cfg.train_from)
else:
tokenizer = T5Tokenizer.from_pretrained(self.cfg.backbone)
special_tokens = []
# add domains
domains = definitions.ALL_DOMAINS + ["general"]
for domain in sorted(domains):
token = "[" + domain + "]"
special_tokens.append(token)
# add intents
intents = list(set(chain(*definitions.DIALOG_ACTS.values())))
for intent in sorted(intents):
token = "[" + intent + "]"
special_tokens.append(token)
intents = list(set(chain(*definitions.USER_ACTS.values())))
for intent in sorted(intents):
token = "[" + intent + "]"
special_tokens.append(token)
# add slots
slots = list(set(definitions.ALL_INFSLOT + definitions.ALL_REQSLOT))
for slot in sorted(slots):
token = "[value_" + slot + "]"
special_tokens.append(token)
special_tokens.extend(definitions.SPECIAL_TOKENS)
special_tokens.extend(['<sos_context>', '<eos_context>'])
tokenizer.add_special_tokens({"additional_special_tokens": special_tokens})
return tokenizer
class CollateForPPTOD(object):
def __init__(self, pad_id) -> None:
self.pad_id = pad_id
def __call__(self, batch):
batch_input_ids = []
batch_label_ids = []
for i in batch:
batch_input_ids.append(i[0])
batch_label_ids.append(i[1])
batch_input_tensor = [torch.tensor(i, dtype=torch.long) for i in batch_input_ids]
batch_label_tensor = [torch.tensor(i, dtype=torch.long) for i in batch_label_ids]
batch_input_tensor = pad_sequence(batch_input_tensor, batch_first=True, padding_value=self.pad_id)
batch_label_tensor = pad_sequence(batch_label_tensor, batch_first=True, padding_value=self.pad_id)
return batch_input_tensor, batch_label_tensor
class PPTODRunner(BaseRunner):
def __init__(self, cfg, reader):
super().__init__(cfg, reader)
self.cfg = cfg
self.reader = reader
self.iterator = MultiWOZIterator(reader)
self.evaluator = MultiWozEvaluator(reader, cfg.pred_data_type)
bs_prefix_text = 'translate dialogue to belief state:'
da_prefix_text = 'translate dialogue to dialogue action:'
nlg_prefix_text = 'translate dialogue to system response:'
self.bs_prefix_id = self.reader.tokenizer.convert_tokens_to_ids(self.reader.tokenizer.tokenize(bs_prefix_text))
self.da_prefix_id = self.reader.tokenizer.convert_tokens_to_ids(self.reader.tokenizer.tokenize(da_prefix_text))
self.nlg_prefix_id = self.reader.tokenizer.convert_tokens_to_ids(self.reader.tokenizer.tokenize(nlg_prefix_text))
self.sos_context_token_id = self.reader.tokenizer.convert_tokens_to_ids(['<sos_context>'])[0]
self.eos_context_token_id = self.reader.tokenizer.convert_tokens_to_ids(['<eos_context>'])[0]
def load_model(self):
if self.cfg.ckpt is not None:
model_path = self.cfg.ckpt
elif self.cfg.train_from is not None:
model_path = self.cfg.train_from
else:
model_path = self.cfg.backbone
model = T5ForConditionalGeneration.from_pretrained(model_path)
logger.info("Load model from {}".format(model_path))
model.resize_token_embeddings(self.reader.vocab_size)
model.to(self.cfg.device)
return model
def train(self):
collate_fn = CollateForPPTOD(self.reader.pad_token_id)
train_dataset = MultiWOZDatasetPPTOD(self.reader.data['train'], 'train', self.reader.tokenizer, self.bs_prefix_id, self.da_prefix_id, self.nlg_prefix_id, self.sos_context_token_id, self.eos_context_token_id)
train_dataloader = DataLoader(train_dataset, batch_size=self.cfg.batch_size, shuffle=True, collate_fn=collate_fn)
num_training_steps_per_epoch = len(train_dataloader)
optimizer, scheduler = self.get_optimizer_and_scheduler(num_training_steps_per_epoch, self.cfg.batch_size)
best_combined_score = 0.0
best_epoch=0
for epoch in range(1, self.cfg.epochs + 1):
self.model.train()
self.model.zero_grad()
training_avg_loss = 0
for step, batch in enumerate(tqdm(train_dataloader, desc='Epoch {} Training'.format(epoch))):
inputs_ids, outputs_ids = batch
inputs_ids = inputs_ids.to(self.cfg.device)
outputs_ids = outputs_ids.to(self.cfg.device)
attention_mask = torch.where(inputs_ids == self.reader.pad_token_id, 0, 1)
model_outputs = self.model(
input_ids=inputs_ids,
attention_mask=attention_mask,
labels=outputs_ids,
)
loss = model_outputs.loss
if self.cfg.grad_accum_steps > 1:
loss = loss / self.cfg.grad_accum_steps
training_avg_loss += loss.item()
loss.backward()
torch.nn.utils.clip_grad_norm_(self.model.parameters(), self.cfg.max_grad_norm)
if (step + 1) % self.cfg.grad_accum_steps == 0:
optimizer.step()
scheduler.step()
optimizer.zero_grad()
logger.info("done {}/{} epoch; Average training loss: {}".format(epoch, self.cfg.epochs, training_avg_loss / len(train_dataloader)))
if epoch > self.cfg.test_after_epochs:
bleu, success, match = self.predict(predict_when_training=True)
score = 0.5 * (success + match) + bleu
logger.info('Epoch %d: match: %2.2f; success: %2.2f; bleu: %2.2f; score: %.2f' % (
epoch, match, success, bleu, score))
if score > best_combined_score:
best_combined_score = score
best_epoch = epoch
self.save_model(epoch)
logger.info('Best combined score: {} at epoch {}.'.format(best_combined_score, best_epoch))
def predict(self, predict_when_training=False):
self.model.eval()
pred_batches, _, _, _ = self.iterator.get_batches(self.cfg.pred_data_type, self.cfg.batch_size, num_gpus=1)
results = {}
for dial_batch in tqdm(pred_batches, total=len(pred_batches), desc="Prediction"):
batch_size = len(dial_batch)
dial_history = [[] for _ in range(batch_size)]
for turn_batch in self.iterator.transpose_batch(dial_batch):
batch_bs_encoder_input_ids = []
batch_da_encoder_input_ids = []
batch_nlg_encoder_input_ids = []
for t, turn in enumerate(turn_batch):
context_for_bs = self.iterator.flatten_dial_history(dial_history[t], len(self.bs_prefix_id) + len(turn['user']) + 1)
bs_encoder_input_ids = self.bs_prefix_id + [self.sos_context_token_id] + context_for_bs + turn['user'] + [self.eos_context_token_id]
batch_bs_encoder_input_ids.append(self.iterator.tensorize(bs_encoder_input_ids))
batch_bs_encoder_input_ids = pad_sequence(batch_bs_encoder_input_ids, batch_first=True, padding_value=self.reader.pad_token_id)
batch_bs_encoder_input_ids = batch_bs_encoder_input_ids.to(self.cfg.device)
attention_mask = torch.where(batch_bs_encoder_input_ids == self.reader.pad_token_id, 0, 1)
# belief tracking
with torch.no_grad():
belief_outputs = self.model.generate(input_ids=batch_bs_encoder_input_ids,
attention_mask=attention_mask,
eos_token_id=self.reader.eos_token_id,
max_length=100)
belief_outputs = belief_outputs.cpu().numpy().tolist()
decoded_belief_outputs = self.finalize_outputs(
belief_outputs, 'bspn_gen', '<eos_b>')
for t, turn in enumerate(turn_batch):
turn.update(**decoded_belief_outputs[t])
dbpn = []
for turn in turn_batch:
bspn_gen = turn["bspn_gen"]
bspn_gen = self.reader.tokenizer.decode(
bspn_gen, clean_up_tokenization_spaces=False)
db_token = self.reader.bspn_to_db_pointer(bspn_gen, turn["turn_domain"])
dbpn_gen = self.reader.encode_text(
db_token,
bos_token='<sos_d>',
eos_token='<eos_d>')
turn["dbpn_gen"] = dbpn_gen
dbpn.append(dbpn_gen)
for t, turn in enumerate(turn_batch):
context_for_da = self.iterator.flatten_dial_history(dial_history[t], len(self.da_prefix_id) + len(turn['user']) + len(turn["dbpn_gen"]) + 1)
context_for_nlg = self.iterator.flatten_dial_history(dial_history[t], len(self.nlg_prefix_id) + len(turn['user']) + len(turn["dbpn_gen"]) + 1)
da_encoder_input_ids = self.da_prefix_id + [self.sos_context_token_id] + context_for_da + turn['user'] + [self.eos_context_token_id] + turn["dbpn_gen"]
nlg_encoder_input_ids = self.nlg_prefix_id + [self.sos_context_token_id] + context_for_nlg + turn['user'] + [self.eos_context_token_id] + turn["dbpn_gen"]
batch_da_encoder_input_ids.append(self.iterator.tensorize(da_encoder_input_ids))
batch_nlg_encoder_input_ids.append(self.iterator.tensorize(nlg_encoder_input_ids))
turn_domain = turn['turn_domain'][-1]
if "[" in turn_domain:
turn_domain = turn_domain[1:-1]
batch_da_encoder_input_ids = pad_sequence(batch_da_encoder_input_ids,
batch_first=True,
padding_value=self.reader.pad_token_id)
batch_nlg_encoder_input_ids = pad_sequence(batch_nlg_encoder_input_ids,
batch_first=True,
padding_value=self.reader.pad_token_id)
batch_da_encoder_input_ids = batch_da_encoder_input_ids.to(self.cfg.device)
batch_nlg_encoder_input_ids = batch_nlg_encoder_input_ids.to(self.cfg.device)
attention_mask_da = torch.where(
batch_da_encoder_input_ids == self.reader.pad_token_id, 0, 1)
attention_mask_nlg = torch.where(
batch_nlg_encoder_input_ids == self.reader.pad_token_id, 0, 1)
# action prediction
with torch.no_grad():
aspn_outputs = self.model.generate(
input_ids=batch_da_encoder_input_ids,
attention_mask=attention_mask_da,
eos_token_id=self.reader.eos_token_id,
max_length=100,
)
resp_outputs = self.model.generate(
input_ids=batch_nlg_encoder_input_ids,
attention_mask=attention_mask_nlg,
eos_token_id=self.reader.eos_token_id,
max_length=200,
)
aspn_outputs = aspn_outputs.cpu().numpy().tolist()
resp_outputs = resp_outputs.cpu().numpy().tolist()
decoded_action_outputs = self.finalize_outputs(aspn_outputs, 'aspn_gen', '<eos_a>')
decoded_response_outputs = self.finalize_outputs(resp_outputs, 'resp_gen', '<eos_r>')
for t, turn in enumerate(turn_batch):
turn.update(**decoded_action_outputs[t])
turn.update(**decoded_response_outputs[t])
# update dial_hitory
for t, turn in enumerate(turn_batch):
pv_text = turn['user'] + turn['resp_gen']
dial_history[t].append(pv_text)
result = self.iterator.get_readable_batch(dial_batch)
results.update(**result)
if predict_when_training == False:
save_json(results, os.path.join(self.cfg.ckpt, self.cfg.output))
bleu, success, match = self.evaluator.e2e_eval(results)
return bleu, success, match
def finalize_outputs(self, outputs, output_type, eos_token):
'''
output_type: bspn_gen, aspn_gen, resp_gen
'''
eos_token_id = self.reader.get_token_id(eos_token)
batch_decoded = []
for i, belief_output in enumerate(outputs):
if belief_output[0] == self.reader.pad_token_id:
belief_output = belief_output[1:]
if eos_token_id not in belief_output:
eos_idx = len(belief_output) - 1
else:
eos_idx = belief_output.index(eos_token_id)
decoded = {}
decoded[output_type] = belief_output[:eos_idx + 1]
batch_decoded.append(decoded)
return batch_decoded
def parse_config():
parser = argparse.ArgumentParser()
# dataset configuration
parser.add_argument("--version", type=str, default="2.0", choices=["2.0", "2.1"])
# model configuration
parser.add_argument('--backbone', type=str, default='pptod_small', help='pptod_small, pptod_base, pptod_large')
parser.add_argument('--ckpt', type=str, default=None, help='the path that stores pretrained checkpoint.')
parser.add_argument('--train_from', type=str, default=None)
parser.add_argument('--model_name', type=str, default='pptod', help = 'mttod, pptod, ubar, galaxy')
# training configuration
parser.add_argument('--run_type', type=str, default='train', choices=['train', 'predict'])
parser.add_argument('--batch_size', type=int, default=32)
parser.add_argument("--epochs", type=int, default=20)
parser.add_argument("--warmup_steps", type=int, default=-1)
parser.add_argument("--warmup_ratio", type=float, default=0.2)
parser.add_argument("--learning_rate", type=float, default=5e-4)
parser.add_argument("--weight_decay", type=float, default=0.0)
parser.add_argument("--grad_accum_steps", type=int, default=1)
parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.")
parser.add_argument("--seed", type=int, default=42)
parser.add_argument("--max_to_keep_ckpt", type=int, default=1)
parser.add_argument("--model_dir", type=str, default='pptod_small_finetune', help="directory to save the model parameters.")
parser.add_argument("--pred_data_type", type=str, default='test', choices=['test', 'dev'])
parser.add_argument("--output", type=str, default='inference.json', help="generated results")
parser.add_argument("--test_after_epochs", type=int, default=5)
parser.add_argument("--no_validation", action="store_true")
parser.add_argument("--no_learning_rate_decay", action="store_true")
return parser.parse_args()
if __name__ == '__main__':
if torch.cuda.is_available():
logger.info('Cuda is available.')
cuda_available = torch.cuda.is_available()
multi_gpu_training = False
if cuda_available:
if torch.cuda.device_count() > 1:
multi_gpu_training = True
logger.info('Using Multi-GPU training, number of GPU is {}'.format(torch.cuda.device_count()))
else:
logger.info('Using single GPU training.')
else:
pass
cfg = parse_config()
device = torch.device('cuda')
setattr(cfg, "device", device)
if cfg.seed > 0:
random.seed(cfg.seed)
np.random.seed(cfg.seed)
torch.manual_seed(cfg.seed)
torch.cuda.manual_seed_all(cfg.seed)
logger.info("Set random seed to %d", cfg.seed)
pptod_reader = MultiWOZReader(cfg, cfg.version)
pptod_runner = PPTODRunner(cfg, pptod_reader)
if cfg.run_type == 'train':
pptod_runner.train()
elif cfg.run_type == 'predict':
bleu, success, match = pptod_runner.predict(predict_when_training=False)
score = 0.5 * (success + match) + bleu
logger.info('match: %2.2f; success: %2.2f; bleu: %2.2f; score: %.2f' % (
match, success, bleu, score))