-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathgraph_generator.py
101 lines (83 loc) · 2.5 KB
/
graph_generator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
import math
import networkx as nx
import random
import numpy as np
from networkx.generators.classic import empty_graph
def kronecker_random_graph(k, P, seed=None, directed=False, n_edges=None):
"""
k: number of iterations of the product
P: initiator matrix
"""
dim = len(P)
errorstring = ("The initiator matrix must be a nonempty" +
(", symmetric," if not directed else "") +
" square matrix of probabilities.")
if dim == 0:
raise nx.NetworkXError(errorstring)
for i, arr in enumerate(P):
if len(arr) != dim:
raise nx.NetworkXError(errorstring)
for j, p in enumerate(arr):
if p < 0 or p > 1:
raise nx.NetworkXError(errorstring)
if not directed and P[i][j] != P[j][i]:
raise nx.NetworkXError(errorstring)
if k < 1:
return empty_graph(1)
n = dim**k
G = empty_graph(n)
G = nx.DiGraph(G)
acc = 0.0
partitions = []
for i in range(dim):
for j in range(dim):
if P[i][j] != 0:
acc = acc+P[i][j]
partitions.append([acc, i, j])
psum = acc
G.add_nodes_from(range(n))
G.name = "kronecker2_random_graph(%s, %s)".format(n, P)
if seed is not None:
random.seed(seed)
if n_edges is None:
expected_edges = math.floor(psum**k)
else:
expected_edges = n_edges
num_edges = 0
while num_edges < expected_edges:
multiplier = dim**k
x = y = 0
for i in range(k):
multiplier = multiplier // dim
r = c = -1
p = random.uniform(0, psum)
for n in range(len(partitions)):
if partitions[n][0] >= p:
r = partitions[n][1]
c = partitions[n][2]
break
x = x + r*multiplier
y = y + c*multiplier
if not G.has_edge(x, y):
G.add_edge(x, y)
num_edges = num_edges + 1
if not directed:
G = G.to_undirected()
return G
P_peri = np.array([[0.9, 0.1], [0.1, 0.3]])
P_hier = np.array([[0.9, 0.1], [0.1, 0.9]])
P_rand = np.array([[0.5, 0.5], [0.5, 0.5]])
def grid_2d(n):
"""
n: height and width
p: infection proba
"""
return nx.grid_2d_graph(n, n)
def add_p_and_delta(g, p, d):
"""p: infection proba
d: transmission delay
"""
for i, j in g.edges_iter():
g[i][j]['p'] = p
g[i][j]['d'] = d
return g