-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathinf_helpers.py
55 lines (42 loc) · 1.82 KB
/
inf_helpers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
from collections import Counter
from itertools import chain
from sample_pool import TreeSamplePool
from tree_stat import TreeBasedStatistics
from random_steiner_tree.util import from_gt
from inference import infection_probability
from graph_tool.centrality import pagerank
def infection_probability_shortcut(g, edge_weights,
obs,
n_samples=5000,
root_sampler=None,
log=False,
sampling_method='loop_erased'):
gi = from_gt(g, edge_weights)
# print('n_samples', n_samples)
sampler = TreeSamplePool(g, n_samples, sampling_method, gi)
sampler.fill(obs, root_sampler=root_sampler, log=log)
est = TreeBasedStatistics(g)
return infection_probability(g, obs, sampler=sampler, error_estimator=est)
def infer_edge_frequency(g, edge_weights, obs,
n_samples=5000,
sampling_method='loop_erased',
root_sampler=None,
log=False):
gi = from_gt(g, edge_weights)
# print('n_samples', n_samples)
sampler = TreeSamplePool(g, n_samples, sampling_method, gi, return_type='tuples')
sampler.fill(obs, root_sampler=root_sampler, log=log)
samples_normalized = [[tuple(sorted(e)) for e in t]
for t in sampler.samples]
return Counter(chain(*samples_normalized))
def pagerank_scores(g, obs, weight=None, eps=0.0):
pers = g.new_vertex_property('float')
pers.a += eps # add some noise
for o in obs:
pers.a[o] = 1
pers.a /= pers.a.sum()
rank = pagerank(g, pers=pers, weight=weight)
if rank.a.sum() == 0:
raise ValueError('PageRank score all zero')
p = rank.a / rank.a.sum()
return p