forked from jjwillard/cov_adj_bact
-
Notifications
You must be signed in to change notification settings - Fork 0
/
find_marg_hr_tte.R
113 lines (87 loc) · 3.83 KB
/
find_marg_hr_tte.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
pacman::p_load(tidyr, rstanarm, simsurv, foreach, doParallel, tibble, purrr, dplyr)
generate_data <- function(iteration, max_ss){
tibble(id = 1:max_ss,
treatment = rbinom(n = max_ss, size = 1, p= 0.5),
x1 = rbinom(n = max_ss, size = 1, p= 0.5),
x2 = rbinom(n = max_ss, size = 1, p= 0.5),
x3 = rnorm(n = max_ss),
x4 = x3**2,
x5 = rnorm(n = max_ss),
### x6, x7, x8 are just noise
x6 = rbinom(n = max_ss, size = 1, p= 0.5),
x7 = rnorm(n = max_ss),
x8 = rnorm(n = max_ss))
}
generate_outcomes <- function(data, effect_treatment, beta_1, beta_2, beta_3, beta_4, beta_5){
time_fixed_covariate_effects <- tibble(treatment = effect_treatment, #lh_c,
x1 = beta_1,
x2 = beta_2,
x3 = beta_3,
x4 = beta_4,
x5 = beta_5) %>%
uncount(nrow(data)) # repeats the rows
time_data <- simsurv(dist = "exponential",
lambdas = 0.05, # mean of 1/0.05 =20 time units
betas = time_fixed_covariate_effects,
x = data) %>%
select(-status)
data %>%
left_join(time_data, by = "id")
}
## Raw estimate of marginal hazard ratio at time t=75
get_marginal_hr <- function(iteration, lh_c){
data_y <- generate_outcomes(generate_data(1, max_ss = 5000),
effect_treatment = lh_c,
beta_1 = 1,
beta_2 = -0.5,
beta_3 = 1,
beta_4 = -0.1,
beta_5 = 0.5)
res <- data_y %>%
mutate(survived = if_else(eventtime > 75, 1, 0)) %>%
group_by(treatment) %>%
summarize(p_surv = mean(survived, na.rm = TRUE))
p_surv_ctr <- res %>% filter(treatment == 0) %>% pull(p_surv)
p_surv_trt <- res %>% filter(treatment == 1) %>% pull(p_surv)
exp(log(-log(p_surv_trt)) - log(-log(p_surv_ctr)))
}
## The values of the conditional log hazard ratio (lh_c) are selected as those where
## the unadjuste model achieves approximately 30% and 40% power (N=100), or 50% and 80%
## power (all other N)
cores <- detectCores()
# N=100
registerDoParallel(cores = cores)
hr_100_30p <- foreach(i = 1:5000, .combine = 'c', .errorhandling = 'remove') %dopar% {
get_marginal_hr(i, lh_c = -0.6250000)
}
hr_100_40p <- foreach(i = 1:5000, .combine = 'c', .errorhandling = 'remove') %dopar% {
get_marginal_hr(i, lh_c = -0.84)
}
# N= 200
hr_200_50p <- foreach(i = 1:5000, .combine = 'c', .errorhandling = 'remove') %dopar% {
get_marginal_hr(i, lh_c = -0.53)
}
hr_200_80p <- foreach(i = 1:5000, .combine = 'c', .errorhandling = 'remove') %dopar% {
get_marginal_hr(i, lh_c = -0.8333333)
}
# N = 500
hr_500_50p <- foreach(i = 1:5000, .combine = 'c', .errorhandling = 'remove') %dopar% {
get_marginal_hr(i, lh_c = -0.3500000)
}
hr_500_80p <- foreach(i = 1:5000, .combine = 'c', .errorhandling = 'remove') %dopar% {
get_marginal_hr(i, lh_c = -0.5293333)
}
# N =1000
hr_1000_50p <- foreach(i = 1:5000, .combine = 'c', .errorhandling = 'remove') %dopar% {
get_marginal_hr(i, lh_c = -0.24)
}
hr_1000_80p <- foreach(i = 1:5000, .combine = 'c', .errorhandling = 'remove') %dopar% {
get_marginal_hr(i, lh_c = -0.3611111)
}
stopImplicitCluster()
res <- tibble(max_ss = c(100, 100, 200, 200, 500, 500, 1000, 1000),
lh_c = c(-0.6250000, -0.84, -0.53, -0.8333333, -0.3500000, -0.5293333, -0.24, -0.3611111),
approx_power = c(30, 40, 50, 80, 50, 80, 50, 80),
hr = c(mean(hr_100_30p), mean(hr_100_40p), mean(hr_200_50p), mean(hr_200_80p),
mean(hr_500_50p), mean(hr_500_80p), mean(hr_1000_50p), mean(hr_1000_80p)))
saveRDS(res, "PATH/FILENAME.RDS")