-
Notifications
You must be signed in to change notification settings - Fork 0
/
imgnet_resnet101_Cons-Def_cw_defense.py
649 lines (554 loc) · 30.2 KB
/
imgnet_resnet101_Cons-Def_cw_defense.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
"""
This tutorial shows how to implement Cons-Def against C&W white-box attacks.
Xintao Ding
School of Computer and Information, Anhui Normal University
xintaoding@163.com
"""
import numpy as np
import tensorflow as tf
#import slim.nets.inception_v3 as inception_v3
#import tensorflow.contrib.slim as slim
from create_tf_record import get_example_nums,read_records,get_batch_images
from cleverhans import utils_tf
from cleverhans.data_exten_mulpro import data_exten#Added by Ding
from sklearn.metrics import roc_curve, roc_auc_score#Added by Ding
#from tensorflow.python import pywrap_tensorflow
import multiprocessing
batch_size = 20
labels_nums = 10 # the number of labels
resize_height = 299 # imagenet size
resize_width = 299
net_height = 224 #ResNet101 size
net_width = 224
depths = 3
#input_images = tf.placeholder(dtype=tf.float32, shape=[None, resize_height, resize_width, depths], name='input')
input_images = tf.placeholder(dtype=tf.float32, shape=[None, net_height, net_width, depths])
#input_labels = tf.placeholder(dtype=tf.int32, shape=[None, labels_nums], name='label')
input_labels = tf.placeholder(dtype=tf.int32, shape=[None, labels_nums])
#is_training = tf.placeholder(tf.bool, name='is_training')
is_training = tf.placeholder(tf.bool)
#test data
val_record_file='data/caffe_ilsvrc12_record/val299.tfrecords'
val_nums=get_example_nums(val_record_file)
print('val nums:%d'%(val_nums))
val_images, val_labels = read_records([val_record_file], resize_height, resize_width, type='centralization')
#val_images, val_labels = read_records([val_record_file], resize_height, resize_width, type='normalization')
val_images_batch, val_labels_batch = get_batch_images(val_images, val_labels,
batch_size=batch_size, labels_nums=labels_nums,
one_hot=True, shuffle=False,num_threads=1)
#val_images_batch = tf.image.resize_images(val_images_batch,size=(net_height, net_width))
#val_images_batch = tf.rint(val_images_batch*256.)*(1./256)
val_images_batch=val_images_batch[:,37:261,37:261,:]
TARGETED = False
if TARGETED:
cw_params_batch_size = batch_size * labels_nums
else:
cw_params_batch_size = batch_size
np_dtype = np.dtype('float32')
tf_dtype = tf.as_dtype('float32')
def ZERO():
return np.asarray(0., dtype=np_dtype)
def create_graph():
"""Creates a graph from saved GraphDef file and returns a saver."""
# Creates graph from saved graph_def.pb.
with tf.gfile.FastGFile(
# FLAGS.model_dir, 'classify_image_graph_def.pb'), 'rb') as f:
'models/caffe_ilsvrc12/resnet101_best_models_1015000_0.7600.pb', 'rb') as f:
graph_def = tf.GraphDef()
graph_def.ParseFromString(f.read())
#for line in repr(graph_def).split("\n"):
# if "tensor_content" not in line:
# print(line)
_ = tf.import_graph_def(graph_def, name='')
class InceptionModelPrediction:
def __init__(self, sess, use_logits = True):
self.sess = sess
self.use_logits = use_logits
if self.use_logits:
# output_name = 'InceptionV3/Predictions/Reshape:0'
# print("dddddddddddddddddddddddddd")
# assert 1==2
output_name = "resnet_v1_101/SpatialSqueeze:0"
else:
output_name = 'resnet_v1_101/SpatialSqueeze:0'
self.img = tf.placeholder(tf.float32, (None, 224,224,3))
self.softmax_tensor = tf.import_graph_def(
sess.graph.as_graph_def(),
input_map={'input:0': self.img, 'is_training:0': False},#scaled down model, restored from meta
# input_map={'input:0': self.img},#frozen pb model without training indication because frozen model cannot be retrained
return_elements=[output_name])
def predict(self, dat):
dat = np.squeeze(dat)
# scaled = (0.5 + dat) * 255
scaled = dat.reshape((1,) + dat.shape)
predictions = self.sess.run(self.softmax_tensor,
{self.img: scaled, 'is_training:0': False})#scaled down model, restored from meta
# {self.img: scaled})#frozen pb model without training indication because frozen model cannot be retrained
predictions = np.squeeze(predictions)
return predictions
CREATED_GRAPH = False
class InceptionModel:
global labels_nums
num_labels = labels_nums
num_channels = 3
def __init__(self, sess, use_logits = True):
global CREATED_GRAPH
self.sess = sess
self.use_logits = use_logits
if not CREATED_GRAPH:
create_graph()
# print(sess.run('InceptionV3/Mixed_7c/Branch_3/Conv2d_0b_1x1/BatchNorm/moving_mean:0'))
# assert 1==2
# tf.summary.FileWriter('./summary',sess.graph)
CREATED_GRAPH = True
self.model = InceptionModelPrediction(sess, use_logits)
def predict(self, img):
if self.use_logits:
# output_name = 'InceptionV3/Predictions/Reshape:0'
output_name = "resnet_v1_101/SpatialSqueeze:0"
else:
output_name = 'resnet_v1_101/SpatialSqueeze:0'
# scaled = (0.5+tf.reshape(img,((299,299,3))))*255
# scaled = (0.5+img)*255
print("Resnet101.predict:{},img.shape:{}".format(output_name,img.shape))
if img.shape.as_list()[0]:
# check if a shape has been specified explicitly
softmax_tensor = tf.import_graph_def(
self.sess.graph.as_graph_def(),
input_map={'input:0': img, 'is_training:0': False},#scaled down model, restored from meta
return_elements=[output_name])
else:
# placeholder shape
softmax_tensor = tf.import_graph_def(
self.sess.graph.as_graph_def(),
input_map={'input:0': img, 'is_training:0': False},#scaled down model, restored from meta
return_elements=[output_name])
print("softmax_tensor[0] shape:{}".format(softmax_tensor[0]))
return softmax_tensor[0]
class CWL2(object):
def __init__(self, sess, model, batch_size,net_height, net_width, depths):
# yname = adv_ys
self.sess = sess
self.confidence = 0
self.learning_rate = 5e-3
self.BINARY_SEARCH_STEPS = BINARY_SEARCH_STEPS = 1 #'binary_search_steps': 9,#'binary_search_steps': 1,#9 is the CW author proposed, 1 is the cleverhans setting
self.MAX_ITERATIONS = 1000
self.abort_early = True
self.clip_min = clip_min = -0.5
self.clip_max = clip_max = 0.5
self.initial_const = 10#'initial_const': 10#10 is the default set of cleverhans,0.001 is the CW author proposed
self.CONFIDENCE = 0
self.batch_size = batch_size
self.repeat = BINARY_SEARCH_STEPS >= 10
shape = (batch_size, net_height, net_width, depths)
# the variable we're going to optimize over
modifier = tf.Variable(np.zeros(shape, dtype=np.float32))
# these are variables to be more efficient in sending data to tf
self.timg = tf.Variable(np.zeros(shape), dtype=tf.float32)
self.tlab = tf.Variable(np.zeros((batch_size, labels_nums)), dtype=tf.float32)
self.const = tf.Variable(np.zeros(batch_size), dtype=tf.float32)
# and here's what we use to assign them
self.assign_timg = tf.placeholder(tf.float32, shape)
self.assign_tlab = tf.placeholder(tf.float32, (batch_size,labels_nums))
self.assign_const = tf.placeholder(tf.float32, [batch_size])
# the resulting instance, tanh'd to keep bounded from clip_min
# to clip_max
self.newimg = (tf.tanh(modifier + self.timg) + 1) / 2
self.newimg = self.newimg * (clip_max - clip_min) + clip_min
# prediction BEFORE-SOFTMAX of the model
self.output = model.predict(self.newimg)
# output = end_points['Predictions']
# distance to the input data
self.other = (tf.tanh(self.timg) + 1) / \
2 * (clip_max - clip_min) + clip_min
self.l2dist = tf.reduce_sum(tf.square(self.newimg - self.other), list(range(1, len(shape))))
# compute the probability of the label class versus the maximum other
real = tf.reduce_sum((self.tlab) * self.output, 1)
other = tf.reduce_max((1 - self.tlab) * self.output - self.tlab * 10000, 1)
self.real = real
self.other = other
if TARGETED:
# if targeted, optimize for making the other class most likely
ini_loss1 = tf.maximum(ZERO(), other - real + self.CONFIDENCE)
else:
# if untargeted, optimize for making this class least likely.
ini_loss1 = tf.maximum(ZERO(), real - other + self.CONFIDENCE)
# sum up the losses
self.loss2 = tf.reduce_sum(self.l2dist)
self.loss1 = tf.reduce_sum(self.const * ini_loss1)
self.loss = self.loss1 + self.loss2
# Setup the adam optimizer and keep track of variables we're creating
start_vars = set(x.name for x in tf.global_variables())
optimizer = tf.train.AdamOptimizer(self.learning_rate)
self.train = optimizer.minimize(self.loss, var_list=[modifier])
# add_modifier = modifier.assign_add(np.ones(shape))
end_vars = tf.global_variables()
new_vars = [x for x in end_vars if x.name not in start_vars]
# these are the variables to initialize when we run
self.setup = []
self.setup.append(self.timg.assign(self.assign_timg))
self.setup.append(self.tlab.assign(self.assign_tlab))
self.setup.append(self.const.assign(self.assign_const))
# setup.append(output.assign(assign_output))
self.init = tf.variables_initializer(var_list=[modifier] + new_vars)
def attack(self, imgs, labs):
def compare(x, y):
if not isinstance(x, (float, int, np.int64)):
global TARGETED
x = np.copy(x)
if TARGETED:
x[y] -= self.CONFIDENCE
else:
x[y] += self.CONFIDENCE
x = np.argmax(x)
if TARGETED:
return x == y
else:
return x != y
oimgs = np.clip(imgs, self.clip_min, self.clip_max)
# re-scale instances to be within range [0, 1]
imgs = (imgs - self.clip_min) / (self.clip_max - self.clip_min)
imgs = np.clip(imgs, 0, 1)
# now convert to [-1, 1]
imgs = (imgs * 2) - 1
# convert to tanh-space
imgs = np.arctanh(imgs * .999999)
batch_size = self.batch_size
# set the lower and upper bounds accordingly
lower_bound = np.zeros(batch_size)
CONST = np.ones(batch_size) * self.initial_const
upper_bound = np.ones(batch_size) * 1e10
# placeholders for the best l2, score, and instance attack found so far
o_bestl2 = [1e10] * batch_size
o_bestscore = [-1] * batch_size
o_bestattack = np.copy(oimgs)
for outer_step in range(self.BINARY_SEARCH_STEPS):
# completely reset adam's internal state.
self.sess.run(self.init)
batch = imgs[:batch_size]
batchlab = labs[:batch_size]
bestl2 = [1e10] * batch_size
bestscore = [-1] * batch_size
print(" Binary search step {} of {}".format(outer_step, self.BINARY_SEARCH_STEPS))
# The last iteration (if we run many steps) repeat the search once.
if self.repeat and outer_step == self.BINARY_SEARCH_STEPS - 1:
CONST = upper_bound
# set the variables so that we don't have to send them over again
self.sess.run(
self.setup, {
self.assign_timg: batch,
self.assign_tlab: batchlab,
self.assign_const: CONST#,
# assign_output: output_host
})
prev = 1e20
for iteration in range(self.MAX_ITERATIONS):
# perform the attack
scores, llllbbbb = self.sess.run([self.output, self.tlab])
# print("scores:{}".format(np.sum(scores)))
_, l, l1, other,real, l2, l2s, scores, nimg, timage = self.sess.run([
self.train, self.loss, self.loss1, self.other,self.real, self.loss2, self.l2dist, self.output,
self.newimg, self.timg])
# check if we should abort search if we're getting nowhere.
self.ABORT_EARLY=False
if self.ABORT_EARLY and \
iteration % ((self.MAX_ITERATIONS // 10) or 1) == 0:
print("===================l:{},prev:{}".format(l,prev))
if l > prev * .9999:
msg = " Failed to make progress; stop early"
print(msg)
break
prev = l
# adjust the best result found so far
for e, (l2, sc, ii) in enumerate(zip(l2s, scores, nimg)):
# print('e:{}'.format(e))
lab = np.argmax(batchlab[e])
if l2 < bestl2[e] and compare(sc, lab):
bestl2[e] = l2
bestscore[e] = np.argmax(sc)
if l2 < o_bestl2[e] and compare(sc, lab):
o_bestl2[e] = l2
o_bestscore[e] = np.argmax(sc)
o_bestattack[e] = ii
# adjust the constant as needed
for e in range(batch_size):
if compare(bestscore[e], np.argmax(batchlab[e])) and \
bestscore[e] != -1:
# success, divide const by two
upper_bound[e] = min(upper_bound[e], CONST[e])
if upper_bound[e] < 1e9:
CONST[e] = (lower_bound[e] + upper_bound[e]) / 2
else:
# failure, either multiply by 10 if no solution found yet
# or do binary search with the known upper bound
lower_bound[e] = max(lower_bound[e], CONST[e])
if upper_bound[e] < 1e9:
CONST[e] = (lower_bound[e] + upper_bound[e]) / 2
else:
CONST[e] *= 10#revised by Ding
print(" Successfully generated adversarial examples on {} of {} instances.".format(sum(upper_bound < 1e9), batch_size))
o_bestl2 = np.array(o_bestl2)
mean = np.mean(np.sqrt(o_bestl2[o_bestl2 < 1e9]))
print(" Mean successful distortion: {}".format(mean))
# return the best solution found
o_bestl2 = np.array(o_bestl2)
return o_bestattack
val_max_steps = int(val_nums / batch_size)
base_range=4
n_pert = base_range**depths
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
sess.run(tf.local_variables_initializer())
coord = tf.train.Coordinator()
threads = tf.train.start_queue_runners(sess=sess, coord=coord)
model = InceptionModel(sess)#import a pb graphy using a class initialization
preds = model.predict(input_images)
probs = tf.nn.softmax(preds)
cw=CWL2(sess, model, batch_size,net_height, net_width, depths)#initial cw attach
x_test = np.zeros((val_nums,net_height,net_width,depths),dtype=np.float32)
y_test = np.zeros((val_nums,labels_nums),dtype=np.float32)
logits = np.zeros((val_nums,labels_nums),dtype=np.float32)
logits_adv = np.zeros((val_nums,labels_nums),dtype=np.float32)
adv = np.zeros((val_nums,net_height,net_width,depths),dtype=np.float32)
for i in range(val_max_steps):
print("i:{}".format(i))
val_x_bat, val_y_bat = sess.run([val_images_batch, val_labels_batch])
adv_bat = cw.attack(val_x_bat, val_y_bat)
logits_bat = sess.run([preds],feed_dict = {input_images: val_x_bat, is_training: False})
logits_adv_bat = sess.run([preds],feed_dict = {input_images: adv_bat, is_training: False})
logits_adv_bat = np.array(logits_adv_bat[0])
logits_bat = np.array(logits_bat[0])
val_acc = np.equal(np.argmax(logits_bat, axis=1), np.argmax(val_y_bat, axis=1))
val_adv_acc = np.equal(np.argmax(logits_adv_bat, axis=1), np.argmax(val_y_bat, axis=1))
x_test[i*batch_size:(i+1)*batch_size,:,:,:] = val_x_bat
y_test[i*batch_size:(i+1)*batch_size,:] = val_y_bat
adv[i*batch_size:(i+1)*batch_size,:,:,:] = adv_bat#Ranged in [0, 1]
logits[i*batch_size:(i+1)*batch_size,:] = logits_bat
logits_adv[i*batch_size:(i+1)*batch_size,:] = logits_adv_bat
#########################################
coord.request_stop()
coord.join(threads)
np.save("cifar10_ResNet101_augmodel_cwl2_10000adv",adv)#save advs
percent_perturbed = np.mean(np.sum((adv - x_test)**2, axis=(1, 2, 3))**.5)
dsae=0
kk=0
# dsae_f=0
adv_suc_att_exam = np.equal(np.argmax(logits_adv,axis=1),np.argmax(y_test,axis=1))
suc_att_exam = np.equal(np.argmax(logits,axis=1),np.argmax(y_test,axis=1))
for i in range(len(adv_suc_att_exam)):
if adv_suc_att_exam[i]==0 and suc_att_exam[i]>0:#adversarial is misclassified but its corresponding binign example is correctly detected
dsae+=np.sum((adv[i,:,:,:] - x_test[i,:,:,:])**2)**.5
kk += 1
dsae=dsae/kk
print("For untargeted attack, the number of misclassified examples (successful attack), sum(adv_suc_att_exam==0):{}, dsae:{}".format(sum(adv_suc_att_exam==0),dsae))
print('Avg. L_2 norm of perturbations {0:.4f}'.format(percent_perturbed))
print('The number of successful attack:{}, Avg. L_2 norm of perturbations on successful attack / dsae:{}'.format(kk,dsae))
pad_size=22
x_test=np.pad(x_test,((0,0),(pad_size,pad_size),(pad_size,pad_size),(0,0)),'reflect')
x_testcrop = np.zeros((len(x_test),net_height,net_width,3),dtype=np.float32)
adv = np.round(adv*256)/256.0
adv = np.pad(adv,((0,0),(pad_size,pad_size),(pad_size,pad_size),(0,0)),'reflect')
advcrop = np.zeros((len(adv),net_height,net_width,3),dtype=np.float32)
for i in range(len(adv)):
tf_image = adv[i,:,:,:]
test_image = x_test[i,:,:,:]
lu1 = np.random.randint(0,pad_size*2)
lu2 = np.random.randint(0,pad_size*2)
advcrop[i,:,:,:] = tf_image[lu1:lu1+net_height,lu2:lu2+net_width,:]
x_testcrop[i,:,:,:] = test_image[lu1:lu1+net_height,lu2:lu2+net_width,:]
adv = advcrop
x_test = x_testcrop
batch_size = 10
base_range=4
n_pert = base_range**depths
ext_bat = n_pert+1
logits_ext = np.zeros((val_nums*n_pert,labels_nums),dtype=np.float32)
logits_adv_ext = np.zeros((val_nums*n_pert,labels_nums),dtype=np.float32)
test_prob_pertpart=np.zeros((val_nums*n_pert,labels_nums),dtype=np.float32)
adv_prob_pertpart=np.zeros((val_nums*n_pert,labels_nums),dtype=np.float32)
y_test_pertpart = np.zeros((val_nums*n_pert,labels_nums),dtype=np.float32)
y_adv_pertpart = np.zeros((val_nums*n_pert,labels_nums),dtype=np.float32)
x_adv_pertpart = np.zeros((batch_size*n_pert*2,net_height,net_width,depths),dtype=np.float32)
x_test_pertpart = np.zeros((batch_size*n_pert*2,net_height,net_width,depths),dtype=np.float32)
val_max_steps = int(len(adv) / batch_size/2)
adv_prob_legit = np.zeros((val_nums,labels_nums),dtype=np.float32)
test_prob_legit = np.zeros((val_nums,labels_nums),dtype=np.float32)
manager=multiprocessing.Manager()
for i in range(val_max_steps):
rt_res_adv1=manager.dict()
rt_res_adv2=manager.dict()
rt_res_test1=manager.dict()
rt_res_test2=manager.dict()
p1 = multiprocessing.Process(target=data_exten,args=(adv[i*2*batch_size:(2*i+1)*batch_size,:,:,:],
y_test[2*i*batch_size:(2*i+1)*batch_size,:],
batch_size, base_range,labels_nums,net_height, net_width,3,
rt_res_adv1))
p2 = multiprocessing.Process(target=data_exten,args=(adv[(2*i+1)*batch_size:2*(i+1)*batch_size,:,:,:],
y_test[(2*i+1)*batch_size:2*(i+1)*batch_size,:],
batch_size, base_range,labels_nums,net_height, net_width,3,
rt_res_adv2))
p3 = multiprocessing.Process(target=data_exten,args=(x_test[2*i*batch_size:(2*i+1)*batch_size,:,:,:],
y_test[2*i*batch_size:(2*i+1)*batch_size,:],
batch_size, base_range,labels_nums,net_height, net_width,3,
rt_res_test1))
p4 = multiprocessing.Process(target=data_exten,args=(x_test[(2*i+1)*batch_size:2*(i+1)*batch_size,:,:,:],
y_test[(2*i+1)*batch_size:2*(i+1)*batch_size,:],
batch_size, base_range,labels_nums,net_height, net_width,3,
rt_res_test2))
p1.start()
p2.start()
p3.start()
p4.start()
p1.join()
x_adv_extended1, y_adv_extended1 = rt_res_adv1.values()
p2.join()
x_adv_extended2, y_adv_extended2 = rt_res_adv2.values()
p3.join()
x_test_extended1, y_test_extended1 = rt_res_test1.values()
p4.join()
x_test_extended2, y_test_extended2 = rt_res_test2.values()
x_adv_pertpart[:batch_size*n_pert,:,:,:] = x_adv_extended1[:batch_size*n_pert,:,:,:]
x_adv_pertpart[batch_size*n_pert:2*batch_size*n_pert,:,:,:] = x_adv_extended2[:batch_size*n_pert,:,:,:]
y_adv_pertpart[2*i*batch_size*n_pert:(2*i+1)*batch_size*n_pert,:] = y_adv_extended1[:batch_size*n_pert,:]
y_adv_pertpart[(2*i+1)*batch_size*n_pert:2*(i+1)*batch_size*n_pert,:] = y_adv_extended2[:batch_size*n_pert,:]
x_test_pertpart[:batch_size*n_pert,:,:,:] = x_test_extended1[:batch_size*n_pert,:,:,:]
x_test_pertpart[batch_size*n_pert:2*batch_size*n_pert,:,:,:] = x_test_extended2[:batch_size*n_pert,:,:,:]
y_test_pertpart[2*i*batch_size*n_pert:(2*i+1)*batch_size*n_pert,:] = y_test_extended1[:batch_size*n_pert,:]
y_test_pertpart[(2*i+1)*batch_size*n_pert:2*(i+1)*batch_size*n_pert,:] = y_test_extended2[:batch_size*n_pert,:]
#for test accuracy on legitimate examples extended by x_test
feed_dict = {input_images: adv[2*i*batch_size:2*(i+1)*batch_size,:,:,:], is_training: False}
adv_prob_legit[2*i*batch_size:2*(i+1)*batch_size,:] = sess.run(probs,feed_dict = feed_dict)
feed_dict = {input_images: x_test[2*i*batch_size:2*(i+1)*batch_size,:,:,:], is_training: False}
test_prob_legit[2*i*batch_size:2*(i+1)*batch_size,:] = sess.run(probs,feed_dict = feed_dict)
l_bat=len(x_adv_pertpart)
jsteps = int(l_bat/batch_size)
for j in range(jsteps):
# if j%10 == 0:
# print("j:{}".format(j))
val_x_bat = x_test_pertpart[j*batch_size:(j+1)*batch_size]
val_adv_bat = x_adv_pertpart[j*batch_size:(j+1)*batch_size]
feed_dict = {input_images: val_x_bat, is_training: False}
logits_bat = sess.run([preds], feed_dict=feed_dict)
logits_bat = np.array(logits_bat[0])
feed_dict = {input_images: val_adv_bat, is_training: False}#range to [-0.5, 0.5]
logits_adv_bat = sess.run([preds],feed_dict=feed_dict)
logits_adv_bat = np.array(logits_adv_bat[0])
y_test_prob = sess.run(probs,feed_dict = {input_images: val_x_bat, is_training: False})
y_adv_prob = sess.run(probs,feed_dict = {input_images: val_adv_bat, is_training: False})
logits_ext[2*i*batch_size*n_pert+j*batch_size:2*i*batch_size*n_pert+(j+1)*batch_size,:] = logits_bat
logits_adv_ext[2*i*batch_size*n_pert+j*batch_size:2*i*batch_size*n_pert+(j+1)*batch_size,:] = logits_adv_bat
test_prob_pertpart[2*i*batch_size*n_pert+j*batch_size:2*i*batch_size*n_pert+(j+1)*batch_size,:] = y_test_prob
adv_prob_pertpart[2*i*batch_size*n_pert+j*batch_size:2*i*batch_size*n_pert+(j+1)*batch_size,:] = y_adv_prob
#########################################
auc_score_test = roc_auc_score(y_test, test_prob_legit)
auc_score_adv = roc_auc_score(y_test, adv_prob_legit)
print("auc_score_test:{},auc_score_adv:{}".format(auc_score_test, auc_score_adv))
auc_score_test_ext = roc_auc_score(y_test_pertpart, test_prob_pertpart)
auc_score_adv_ext = roc_auc_score(y_test_pertpart, adv_prob_pertpart)
print("auc on extended examples, auc_score_test_ext:{},auc_score_adv_ext:{}".format(auc_score_test_ext, auc_score_adv_ext))
logits = np.argmax(logits,axis=1)
logits_adv = np.argmax(logits_adv,axis=1)
y_test = np.argmax(y_test,axis=1)
acc = np.sum(np.equal(logits,y_test))/len(y_test)
acc_adv = np.sum(np.equal(logits_adv,y_test))/len(y_test)
print('Test accuracy on legitimate test examples: %0.4f' % (acc))
print('Test accuracy on adversarial test examples: %0.4f' % (acc_adv))
y_test_ext = np.argmax(y_test_pertpart,axis=1)
cur_preds = np.argmax(logits_ext,axis=1)
cur_preds_adv = np.argmax(logits_adv_ext,axis=1)
y_test_ext = np.reshape(y_test_ext,(len(y_test_pertpart)//n_pert,n_pert))
logits_ext = np.reshape(cur_preds,(len(cur_preds)//n_pert,n_pert))
logits_adv_ext = np.reshape(cur_preds_adv,(len(cur_preds_adv)//n_pert,n_pert))
acc_ext = np.sum(np.equal(logits_ext,y_test_ext))/y_test_ext.shape[0]/y_test_ext.shape[1]
acc_adv_ext = np.sum(np.equal(logits_adv_ext,y_test_ext))/y_test_ext.shape[0]/y_test_ext.shape[1]
print('Test accuracy on legitimate examples extened by x_test: %0.4f' % (acc_ext))
print('Test accuracy on extended examples of adversarials: %0.4f' % (acc_adv_ext))
test_result_stat=np.zeros((ext_bat,),dtype=np.float32)
adv_result_stat=np.zeros((ext_bat,),dtype=np.float32)
eva_thresh = np.linspace(32,64,9).astype('int32')#from 32 to 64 with a length 9
len_thresh = len(eva_thresh)
distrib_incons_preds = np.zeros((len_thresh,n_pert),dtype=np.int32)
distrib_incons_preds_adv = np.zeros((len_thresh,n_pert),dtype=np.int32)
auc_div_mat = np.zeros((len(cur_preds),n_pert+1),dtype=np.int32)
auc_div_mat_adv = np.zeros((len(cur_preds),n_pert+1),dtype=np.int32)
for i in range(len(y_test_ext)):
temp = np.sum(np.equal(logits_ext[i,:],y_test_ext[i,:]))
auc_div_mat[i,temp] = 1
test_result_stat[temp] = test_result_stat[temp]+1
a = np.unique(logits_ext[i,:])
for j in range(len_thresh):
if temp<eva_thresh[j]:
kk = []
for k in range(len(a)):
kk.extend([np.sum(logits_ext[i,:]==a[k])])
ind = np.max(np.array(kk))
distrib_incons_preds[j,ind-1] = distrib_incons_preds[j,ind-1]+1
for i in range(len(y_test_ext)):
temp = np.sum(np.equal(logits_adv_ext[i,:],y_test_ext[i,:]))
auc_div_mat_adv[i,temp] = 1
adv_result_stat[temp] = adv_result_stat[temp]+1#there is a inconsensus detection results of the 27 perturbations
a = np.unique(logits_adv_ext[i,:])
for j in range(len_thresh):
if temp<eva_thresh[j]:
kk = []
for k in range(len(a)):
kk.extend([np.sum(logits_adv_ext[i,:]==a[k])])
ind = np.max(np.array(kk))
distrib_incons_preds_adv[j,ind-1] = distrib_incons_preds_adv[j,ind-1]+1
#For a benign, thare are n_pert extension images.
#And there are n_pert classifications of the extension of a benign. They may be different or same
#The maximum occurrence of the classification labels is called consistent rank.
#e.g., n_pert=5, and the classification labels of a benign are (0, 2, 2, 1, 2), then the consistent rank of the benign is 3 that is the occurrence of the label 2.
#Furthermore, correct consistent rank is the number of the extensions of a benign that are correctly classified
#test_result_stat[i]=k
#i: correct consistent rank, i=0, 1, 2, ..., n_pert-1
#k is the count of the correct consistent rank i on test images
print("test_result_stat:{},{}".format(np.sum(test_result_stat),test_result_stat))
print("adv_result_stat:{},{}".format(np.sum(adv_result_stat),adv_result_stat))
for i in range(len_thresh):
#distrib_incons_preds3 is the count of consistent rank on the test images with correct consistent rank less than 3
print("test_result cannot be classified stat (Threshold {}):{},{}".format(eva_thresh[i],np.sum(distrib_incons_preds[i,:]),distrib_incons_preds[i,:]))
#distrib_incons_preds4 is the count of consistent rank on the test images with correct consistent rank less than 4
# print("test_result cannot be classified stat (Threshold 4):{},{}".format(np.sum(distrib_incons_preds4),distrib_incons_preds4))
#classfication: a benign with N(consistent rank)>=3 is labeled consistent rank
#The number of correctly classified benign is N(correct consistent rank)>=3
print("The number of benigns that are correctly classified (Threshold {}):{}".format(eva_thresh[i],np.sum(test_result_stat[eva_thresh[i]-len(adv_result_stat):])))
#The number of incorrectly classified benign is the cardinality of the set {example | N(consistent rank)>=3, true-label(example)~=consistent rank}
print("The number of benigns that are misclassified (Threshold {}):{}".format(eva_thresh[i],np.sum(distrib_incons_preds[i,eva_thresh[i]-len(adv_result_stat):])))
print("The number of benigns that are incorrectly detected as adv (Threshold {}):{}".format(eva_thresh[i],np.sum(distrib_incons_preds[i,:eva_thresh[i]-1])))
print("adv_result cannot be classifed stat (Threshold {}):{},{}".format(eva_thresh[i],np.sum(distrib_incons_preds_adv[i,:]),distrib_incons_preds_adv[i,:]))
print("The number of adv that are correctly classified (Threshold {}):{}".format(eva_thresh[i],np.sum(adv_result_stat[eva_thresh[i]-len(adv_result_stat):])))
print("The number of adv that are misclassified (Threshold {}):{}".format(eva_thresh[i],np.sum(distrib_incons_preds_adv[i,eva_thresh[i]-len(adv_result_stat):])))
print("The number of adv that are correctly detected as adv (Threshold {}):{}".format(eva_thresh[i],np.sum(distrib_incons_preds_adv[i,:eva_thresh[i]-1])))
####calculate auc
benign_ind_clc = np.argwhere(np.sum(auc_div_mat[:,eva_thresh[i]:],axis=1)==1)[:,0]
adv_ind_clc = np.argwhere(np.sum(auc_div_mat_adv[:,eva_thresh[i]:],axis=1)==1)[:,0]
benign_inds = benign_ind_clc*n_pert
adv_inds = adv_ind_clc*n_pert
for j in range(1,n_pert):
benign_inds = np.concatenate((benign_inds, benign_ind_clc*n_pert + j), axis=0)
adv_inds = np.concatenate((adv_inds, adv_ind_clc*n_pert + j), axis=0)
ground_labels = y_test_pertpart[tuple(benign_inds),:]
del_ind=[]
for j in range(labels_nums):
if np.sum(ground_labels[:,j])==0:
del_ind.append(j)
del_ind = np.array(del_ind)
ground_labels = np.delete(ground_labels,del_ind,axis=1)
preded_probs = test_prob_pertpart[tuple(benign_inds),:]
preded_probs = np.delete(preded_probs,del_ind,axis=1)
auc_score_clc_bn = roc_auc_score(ground_labels, preded_probs)
ground_labels_adv = y_adv_pertpart[tuple(adv_inds),:]
del_ind=[]
for j in range(labels_nums):
if np.sum(ground_labels_adv[:,j])==0:
del_ind.append(j)
del_ind = np.array(del_ind)
ground_labels_adv = np.delete(ground_labels_adv,del_ind,axis=1)
preded_probs_adv = adv_prob_pertpart[tuple(adv_inds),:]
preded_probs_adv = np.delete(preded_probs_adv,del_ind,axis=1)
auc_score_clc_adv = roc_auc_score(ground_labels_adv, preded_probs_adv)
# auc_score_clc_adv = roc_auc_score(y_adv_pertpart[tuple(adv_inds),:], y_pertpart_prob_adv[tuple(adv_inds),:])
print("(Threshold {}:) auc_score_clc_bn:{},auc_score_clc_adv:{}".format(eva_thresh[i],auc_score_clc_bn, auc_score_clc_adv))
sess.close()
#########################################