-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path415Project0330.Rmd
382 lines (297 loc) · 11.8 KB
/
415Project0330.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
---
title: '415'
output: pdf_document
---
```{r}
library(dplyr)
data = read.csv("https://raw.githubusercontent.com/xinyexu/Data-Mining-Project/master/NewDataset/banking.csv")
# data= data%>%dplyr::select(-day,-month)
data$y = factor(data$y)
set.seed(12345)
# Subset of Data Points
newDataID = sample(1 : nrow(data), size = floor(0.1 * nrow(data)))
newData <- data[newDataID, ]
# data split into train and test
set.seed(12345)
testID <- sample(1:nrow(newData), size = floor(0.2 * nrow(newData)))
train <- newData[-testID, ]
test <- newData[testID, ]
# remove illiterate level in 'educataion'
newData$education = droplevels(newData$education, exclude = if(anyNA(levels(newData$education))) NULL else NA)
```
As the p-value is pretty small for all cateogrical variabels against y, we reject the null hypothesis that the y is independent of the predictors level.
```{r}
# Visualization - Categorical Variable: Chi-square
# y vs categorical predictors
library(MASS) # load the MASS package
# categorical predictors themselvs
pred_cat = names(Filter(is.factor, newData))
chi_pvalue = matrix(0, nrow= length(pred_cat), ncol= length(pred_cat))
for (ind1 in 1:length(pred_cat)) {
for (ind2 in ind1:(length(pred_cat))) {
tbl = table(newData[,pred_cat[ind1]], newData[,pred_cat[ind2]])
chi2 = chisq.test(tbl, correct=F)
chi_pvalue[ind1, ind2] = chi2$p.value
}
}
show(pred_cat)
show(chi_pvalue)
```
shoulld remove loan, as it is independent with y. The blank indicates the small p-value of Chi-square, meaning
```{r}
rownames(chi_pvalue) = pred_cat
colnames(chi_pvalue) = pred_cat
require("corrplot")
corrplot(chi_pvalue, type = "upper")
```
# obvious categorical
```{r}
library(ggplot2)
ggplot(newData[,pred_cat], aes(y, ..count..)) + geom_bar(aes(fill = contact), position = "dodge")
ggplot(newData[,pred_cat], aes(y, ..count..)) + geom_bar(aes(fill = poutcome), position = "dodge")
```
# erros function for test, train erros and confucsion tables
```{r}
# train and test errors function
erros = function(fitAIC) {
# train error
pred = predict(fitAIC, train)
predProbs = binomial()$linkinv(pred)
trainPrediction = rep("0", nrow(train))
trainPrediction[predProbs > .5] = "1"
train_tab = table(trainPrediction, train$y, dnn = c("Predicted", "Actual"))
train_error = round(mean(trainPrediction != train$y), 5)
# test error
pred2 = predict(fitAIC, test)
predProbs2 = binomial()$linkinv(pred2)
testPrediction = rep("0", nrow(test))
testPrediction[predProbs2 > .5] = "1"
test_tab = table(testPrediction, test$y, dnn = c("Predicted", "Actual"))
test_error = round(mean(testPrediction != test$y), 5)
return (list(train_error=train_error, test_error=test_error,
train_tab=train_tab, test_tab=test_tab))
}
```
## full model
```{r}
# remove loan because insignificant Chi square
train = train%>%dplyr::select(-loan)
y_logistic = glm(y ~., data = train, family = binomial)
summary(y_logistic)
#next, we will use choose lambda by cross validation
set.seed(1234)
X_train = train%>%dplyr::select(-y)
Y_train = train$y
cv.out = cv.glmnet(X_train,Y_train,alpha = 0, lambda = grid, nfold = 10)
plot(cv.out)
```
# backward, forward, stepwise
```{r}
# Backwards
backwards = step(y_logistic, direction='backward')
fitbackward = glm(y ~ education + contact + campaign + poutcome + emp_var_rate + cons_price_idx + cons_conf_idx, data = train, family = binomial)
# Forward
nothing <- glm(y ~ 1,data = train, family=binomial)
forwards = step(nothing,scope=list(lower=formula(nothing),
upper=formula(y_logistic)),direction="forward")
fitforward = glm(y ~ nr_employed + poutcome + contact + education + cons_conf_idx + campaign, data = train, family = binomial)
# Stepwise
bothways = step(nothing,list(lower=formula(nothing),upper=formula(y_logistic)) ,direction="both",trace=0)
fitsetpwise = glm(y ~ nr_employed + poutcome + contact + education + cons_conf_idx + campaign, data = train, family = binomial)
# show the predictors selcted by three methods
show(formula(backwards))
show(formula(forwards))
show(formula(bothways))
# using erros function
fitforward_err = erros(fitbackward)
fitbackward_err = erros(fitforward)
fitstepwise_err = erros(fitsetpwise)
show(c(fitforward_err$train_error, fitforward_err$test_error))
show(c(fitbackward_err$train_error, fitbackward_err$test_error))
show(c(fitstepwise_err$train_error, fitstepwise_err$test_error))
```
subset selection: select a potentially smaller model, AIC, BIC,
```{r}
library(leaps)
regfit.best = regsubsets(y~. , data = train, nvmax = ncol(train)-1)
regfit.Summary = summary(regfit.best)
# names(regfit.Summary) find methods under this package
par(mfrow=c(2,2))
plot(regfit.Summary$rss, xlab="Number of Variables", ylab="RSS",type="l", main = 'RSS')
plot(regfit.Summary$cp, xlab="Number of Variables", ylab="Cp", type='l',
main = 'Mallows Cp/ AIC')
best_cp = which.min(regfit.Summary$cp)
abline(v=best_cp, lty = 2, col = 'red')
plot(regfit.Summary$bic, xlab="Number of Variables", ylab="BIC", type='l',
main = 'BIC')
best_bic = which.min(regfit.Summary$bic)
abline(v = best_bic, lty = 2, col = 'red')
plot(regfit.Summary$adjr2, xlab="Number of Variables", ylab="Adjusted RSq",type="l", main = 'Adjusted R-square')
best_adjr2 = which.max(regfit.Summary$adjr2)
abline(v=best_adjr2, lty = 2, col = 'red')
c(best_cp, best_bic, best_adjr2)
```
# refit the reduced model by AIC, BIC, RSS, Adusted R-square models,
```{r}
# optinal modes selected by AIC, BIC, Adj_R-square
# AIC
# regfit.Summary$outmat[13,]
show(names(which(regfit.Summary$outmat[11,] != ' ')))
fitAIC = glm(y ~ job + education + housing + contact + poutcome + emp_var_rate + cons_price_idx + cons_conf_idx, data = train, family = binomial)
# BIC
show(names(which(regfit.Summary$outmat[7,] != ' ')))
fitBIC = glm(y~contact + poutcome + emp_var_rate + cons_price_idx + cons_conf_idx, data = train, family = binomial)
# Adjr2
show(names(which(regfit.Summary$outmat[14,] != ' ')))
fitAdjr2 = glm(y~job + education + housing + contact + poutcome + emp_var_rate + cons_price_idx + cons_conf_idx, data = train, family = binomial)
```
```{r}
# optinal modes errors selected by AIC, BIC, Adj_R-square
# using erros function
# AIC
fitAIC_err = erros(fitAIC)
show(c(fitAIC_err$train_error, fitAIC_err$test_error))
show(fitAIC_err$train_tab)
show(fitAIC_err$test_tab)
# BIC
fitBIC_err = erros(fitBIC)
show(c(fitBIC_err$train_error, fitBIC_err$test_error))
show(fitBIC_err$train_tab)
show(fitBIC_err$test_tab)
# Adjr2
fitAdjr2_err = erros(fitAdjr2)
show(c(fitAdjr2_err$train_error, fitAdjr2_err$test_error))
show(fitAdjr2_err$train_tab)
show(fitAdjr2_err$test_tab)
```
```{r}
```
##### ANOTHER HEALTHCARE DATASET
```{r}
library(dplyr)
data = read.csv("https://raw.githubusercontent.com/xinyexu/Data-Mining-Project/master/NewDataset/banking.csv")
# reduce 9 categories to 2 variables
data =data %>%
mutate(paytype =
if_else(paytype == 'Private insurance', 'private_ins', 'non_private_ins'))
data$sex01 = as.factor(ifelse(data$sex == 'Female', 1, 0))
data$paytype01 = as.factor(ifelse(data$paytype == 'private_ins', 1, 0))
data$region.Midwest = as.factor(ifelse(data$region == 'Midwest', 1, 0))
data$region.Northeast = as.factor(ifelse(data$region == 'Northeast', 1, 0))
data$region.South = as.factor(ifelse(data$region == 'South', 1, 0))
data$region.West = as.factor(ifelse(data$region == 'West', 1, 0))
write.csv(data, "namcs08_final.csv", row.names = FALSE)
```
# load get dummaries
```{r}
data = read.csv("https://raw.githubusercontent.com/xinyexu/Data-Mining-Project/master/namcs08_final.csv")
```
```{r}
cor(data[,-c(2,3,4)])
```
# select train and test
```{r}
# keep 'region'! delete 4 regions dummies of region
diabetes <- -c(2, 4, 18, 19, 25, 26, 27, 28)
hyperlipid <- -c(2, 4, 17, 19, 25, 26, 27, 28)
htn <- -c(2, 4, 17, 18, 25, 26, 27, 28)
set.seed(12345)
testID <- sample(1:nrow(data), size = trunc(0.2 * nrow(data)))
```
# logistic: for diabetes (diabetes)
```{r}
df <- data[, diabetes]
df[,c(7:20)] <- data.frame(apply(df[,c(7:20)], 2, as.factor))
train <- data[-testID, ]
test <- dat[testID, ]
diabetes_log = glm(y ~., data = train, family = binomial)
summary(diabetes_log)
```
```{r}
# train error
pred = predict(diabetes_log, train)
predProbs = binomial()$linkinv(pred)
trainPrediction = rep("0", nrow(train))
trainPrediction[predProbs > .5] = "1"
table(trainPrediction, train$diabetes, dnn = c("Predicted", "Actual"))
round(mean(trainPrediction != train$diabetes), 3)
# test error
pred2 = predict(diabetes_log, test)
predProbs2 = binomial()$linkinv(pred2)
testPrediction = rep("0", nrow(test))
testPrediction[predProbs2 > .5] = "1"
table(testPrediction, test$diabetes, dnn = c("Predicted", "Actual"))
round(mean(testPrediction != test$diabetes), 3)
# smaple some train datasets for the following plot
samp = sample(1:nrow(train), size = trunc(0.05 * nrow(train)))
# plot points - classes are distinguished by color
plot(train[samp, 'age'],train[samp, 'weight'], col = c("blue", "green")[train$diabetes], xlab = "age", ylab = "weight", main = "True class vs Predicted class by logistic")
# add predictions - classes are distinguished by shape
points(train[samp, 'age'],train[samp, 'weight'], pch = c(2,3)[factor(trainPrediction)])
legend("bottomright", c("true_diabetes=0","true_diabetes=1", "pred_diabetes=0","pred_diabetes=1"), col=c("blue", "green", "black", "black"), pch=c(1,1,2,3), cex = 0.6)
```
subset selection: select a potentially smaller model
```{r}
library(leaps)
regfit.best = regsubsets(diabetes~. , data = train, nvmax = ncol(train)-1)
regfit.Summary = summary(regfit.best)
# names(regfit.Summary) find methods under this package
par(mfrow=c(2,2))
plot(regfit.Summary$rss, xlab="Number of Variables", ylab="RSS",type="l", main = 'RSS')
plot(regfit.Summary$cp, xlab="Number of Variables", ylab="Cp", type='l',
main = 'Mallows Cp/ AIC')
best_cp = which.min(regfit.Summary$cp)
abline(v=best_cp, lty = 2, col = 'red')
plot(regfit.Summary$bic, xlab="Number of Variables", ylab="BIC", type='l',
main = 'BIC')
best_bic = which.min(regfit.Summary$bic)
abline(v = best_bic, lty = 2, col = 'red')
plot(regfit.Summary$adjr2, xlab="Number of Variables", ylab="Adjusted RSq",type="l", main = 'Adjusted R-square')
best_adjr2 = which.max(regfit.Summary$adjr2)
abline(v=best_adjr2, lty = 2, col = 'red')
c(best_cp, best_bic, best_adjr2)
```
```{r}
# select
regfit.Summary$outmat[13,]
names(which(regfit.Summary$outmat[13,] != ' '))
# diabetes_log = glm(diabetes ~., data = train, family = binomial)
fitAIC = glm(diabetes~age + height + weight + sbp + dbp + arthritis + cerebvascdz + crf + ihd + obesity + osteoporosis + sex01 + paytype01, data = train, family = binomial)
# train error
pred = predict(fitAIC, train)
predProbs = binomial()$linkinv(pred)
trainPrediction = rep("0", nrow(train))
trainPrediction[predProbs > .5] = "1"
table(trainPrediction, train$diabetes, dnn = c("Predicted", "Actual"))
round(mean(trainPrediction != train$diabetes), 3)
# test error
pred2 = predict(fitAIC, test)
predProbs2 = binomial()$linkinv(pred2)
testPrediction = rep("0", nrow(test))
testPrediction[predProbs2 > .5] = "1"
table(testPrediction, test$diabetes, dnn = c("Predicted", "Actual"))
round(mean(testPrediction != test$diabetes), 3)
# other BIC and Adjr2
fitBIC = lm(accept_apps~Private + Apps + Accept + Top25perc + Room.Board + Books,data = train)
mse(fitBIC$fit, train$accept_apps)
mse(predict(fitBIC, newdata = test), test$accept_apps)
fitAdjr2 = lm(accept_apps~ . -F.Undergrad - Personal - PhD - S.F.Ratio - Expend, data = train)
mse(fitAdjr2$fit, train$accept_apps)
mse(predict(fitAdjr2, newdata = test), test$accept_apps)
```
```{r}
```
cross validation
```{r}
set.seed(12345)
cv.error[1] = cv.glm(train, lm_AIC_cv5, K=5)$delta[1]
```
# logistic: for htn (Hypertension)
```{r}
data <- data[, hyperlipid]
data_htn = data[,-c('sex')]
```
# logistic: for hyperlipid:
```{r}
data <- data[, htn]
```