输入两个整数序列,第一个序列表示栈的压入顺序,请判断第二个序列是否为该栈的弹出顺序。假设压入栈的所有数字均不相等。例如,序列 {1,2,3,4,5} 是某栈的压栈序列,序列 {4,5,3,2,1} 是该压栈序列对应的一个弹出序列,但 {4,3,5,1,2} 就不可能是该压栈序列的弹出序列。
示例 1:
输入:pushed = [1,2,3,4,5], popped = [4,5,3,2,1] 输出:true 解释:我们可以按以下顺序执行: push(1), push(2), push(3), push(4), pop() -> 4, push(5), pop() -> 5, pop() -> 3, pop() -> 2, pop() -> 1
示例 2:
输入:pushed = [1,2,3,4,5], popped = [4,3,5,1,2] 输出:false 解释:1 不能在 2 之前弹出。
提示:
0 <= pushed.length == popped.length <= 1000
0 <= pushed[i], popped[i] < 1000
pushed
是popped
的排列。
注意:本题与主站 946 题相同:https://leetcode.cn/problems/validate-stack-sequences/
借助一个辅助栈实现。
class Solution:
def validateStackSequences(self, pushed: List[int], popped: List[int]) -> bool:
s = []
q = 0
for num in pushed:
s.append(num)
while s and s[-1] == popped[q]:
s.pop()
q += 1
return not s
class Solution {
public boolean validateStackSequences(int[] pushed, int[] popped) {
Deque<Integer> s = new ArrayDeque<>();
int q = 0;
for (int num : pushed) {
s.push(num);
while (!s.isEmpty() && s.peek() == popped[q]) {
s.pop();
++q;
}
}
return s.isEmpty();
}
}
/**
* @param {number[]} pushed
* @param {number[]} popped
* @return {boolean}
*/
var validateStackSequences = function (pushed, popped) {
let s = [];
let q = 0;
for (let num of pushed) {
s.push(num);
while (s.length > 0 && s[s.length - 1] == popped[q]) {
++q;
s.pop();
}
}
return s.length == 0;
};
class Solution {
public:
bool validateStackSequences(vector<int>& pushed, vector<int>& popped) {
stack<int> s;
int i = 0;
for (int x : pushed) {
s.push(x);
while (!s.empty() && s.top() == popped[i]) {
s.pop();
++i;
}
}
return s.empty();
}
};
function validateStackSequences(pushed: number[], popped: number[]): boolean {
const stack = [];
let i = 0;
for (const num of pushed) {
stack.push(num);
while (stack.length !== 0 && stack[stack.length - 1] === popped[i]) {
stack.pop();
i++;
}
}
return stack.length === 0;
}
impl Solution {
pub fn validate_stack_sequences(pushed: Vec<i32>, popped: Vec<i32>) -> bool {
let mut stack = Vec::new();
let mut i = 0;
for &num in pushed.iter() {
stack.push(num);
while !stack.is_empty() && *stack.last().unwrap() == popped[i] {
stack.pop();
i += 1;
}
}
stack.len() == 0
}
}
public class Solution {
public bool ValidateStackSequences(int[] pushed, int[] popped) {
Stack<int> ans = new Stack<int>();
int q = 0;
foreach (int x in pushed)
{
ans.Push(pushed[x]);
while (ans.Count != 0 && ans.Peek() == popped[q]) {
ans.Pop();
q += 1;
}
}
return ans.Count == 0;
}
}