输入一棵二叉树的根节点,判断该树是不是平衡二叉树。如果某二叉树中任意节点的左右子树的深度相差不超过1,那么它就是一棵平衡二叉树。
示例 1:
给定二叉树 [3,9,20,null,null,15,7]
3 / \ 9 20 / \ 15 7
返回 true
。
示例 2:
给定二叉树 [1,2,2,3,3,null,null,4,4]
1 / \ 2 2 / \ 3 3 / \ 4 4
返回 false
。
限制:
0 <= 树的结点个数 <= 10000
注意:本题与主站 110 题相同:https://leetcode.cn/problems/balanced-binary-tree/
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, x):
# self.val = x
# self.left = None
# self.right = None
class Solution:
def isBalanced(self, root: TreeNode) -> bool:
def height(root):
if root is None:
return 0
return 1 + max(height(root.left), height(root.right))
if root is None:
return True
return abs(height(root.left) - height(root.right)) <= 1 and self.isBalanced(root.left) and self.isBalanced(root.right)
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
class Solution {
public boolean isBalanced(TreeNode root) {
if (root == null) {
return true;
}
return Math.abs(depth(root.left) - depth(root.right)) <= 1 && isBalanced(root.left) && isBalanced(root.right);
}
private int depth(TreeNode tree) {
if (tree == null) {
return 0;
}
return 1 + Math.max(depth(tree.left), depth(tree.right));
}
}
/**
* Definition for a binary tree node.
* function TreeNode(val) {
* this.val = val;
* this.left = this.right = null;
* }
*/
/**
* @param {TreeNode} root
* @return {boolean}
*/
var isBalanced = function (root) {
const depth = root => {
if (!root) {
return 0;
}
return 1 + Math.max(depth(root.left), depth(root.right));
};
if (!root) {
return true;
}
return (
Math.abs(depth(root.left) - depth(root.right)) <= 1 &&
isBalanced(root.left) &&
isBalanced(root.right)
);
};
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
class Solution {
public:
bool isBalanced(TreeNode* root) {
if (!root) {
return true;
}
return abs(depth(root->left) - depth(root->right)) <= 1 && isBalanced(root->left) && isBalanced(root->right);
}
private:
int depth(TreeNode* root) {
if (!root) {
return 0;
}
return 1 + max(depth(root->left), depth(root->right));
}
};
/**
* Definition for a binary tree node.
* type TreeNode struct {
* Val int
* Left *TreeNode
* Right *TreeNode
* }
*/
func isBalanced(root *TreeNode) bool {
if (root == nil) {
return true
}
return math.Abs(float64(depth(root.Left)-depth(root.Right))) <= 1 && isBalanced(root.Left) && isBalanced(root.Right)
}
func depth(root *TreeNode) int {
if (root == nil) {
return 0
}
left, right := depth(root.Left), depth(root.Right)
if (left > right) {
return 1 + left
}
return 1 + right
}
// Definition for a binary tree node.
// #[derive(Debug, PartialEq, Eq)]
// pub struct TreeNode {
// pub val: i32,
// pub left: Option<Rc<RefCell<TreeNode>>>,
// pub right: Option<Rc<RefCell<TreeNode>>>,
// }
//
// impl TreeNode {
// #[inline]
// pub fn new(val: i32) -> Self {
// TreeNode {
// val,
// left: None,
// right: None
// }
// }
// }
use std::rc::Rc;
use std::cell::RefCell;
impl Solution {
fn dfs(root: &Option<Rc<RefCell<TreeNode>>>) -> i32 {
match root {
None => 0,
Some(node) => {
let node = node.borrow();
1 + Self::dfs(&node.left).max(Self::dfs(&node.right))
}
}
}
pub fn is_balanced(root: Option<Rc<RefCell<TreeNode>>>) -> bool {
match root {
None => true,
Some(node) => {
let mut node = node.borrow_mut();
let a = 10;
(Self::dfs(&node.left) - Self::dfs(&node.right)).abs() <= 1
&& Self::is_balanced(node.left.take())
&& Self::is_balanced(node.right.take())
}
}
}
}
/**
* Definition for a binary tree node.
* public class TreeNode {
* public int val;
* public TreeNode left;
* public TreeNode right;
* public TreeNode(int x) { val = x; }
* }
*/
public class Solution {
public bool IsBalanced(TreeNode root) {
if (root == null) {
return true;
}
return Math.Abs(Height(root.left) - Height(root.right)) <= 1 && IsBalanced(root.left) && IsBalanced(root.right);
}
int Height(TreeNode root) {
if (root == null) {
return 0;
}
return 1 + Math.Max(Height(root.left), Height(root.right));
}
}