-
Notifications
You must be signed in to change notification settings - Fork 0
/
13.R
176 lines (164 loc) · 4.57 KB
/
13.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
rm(list = ls())
ni = 13 #GSE32575,4组,胖不胖
{options(stringsAsFactors = F)
library(GEOquery)
load("bg.Rdata")
eSet <- bg[[ni]]
exp <- exprs(eSet[[1]])
exp[1:4,1:4]
pd <- pData(eSet[[1]])
anno = eSet[[1]]@annotation
if(!require(stringr))install.packages("stringr")
library(stringr)
gse = names(bg)[ni]
print(exp[1:4,1:4])
View(pd)
}
identical(rownames(pd),colnames(exp))
group_list = case_when(str_detect(pd$title,"lean_rep")~"lean",
str_detect(pd$title,"lean_pool")~"pool",
str_detect(pd$title,"obese_before")~"obese_before",
str_detect(pd$title,"obese_after")~"obese_after")
exp = log2(exp+1)
#PCA
{
dat=as.data.frame(t(exp))
library(FactoMineR)#画主成分分析图需要加载这两个包
library(factoextra)
# pca的统一操作走起
dat.pca <- PCA(dat, graph = FALSE)
fviz_pca_ind(dat.pca,
geom.ind = "point", # show points only (nbut not "text")
col.ind = group_list, # color by groups
#palette = c("#00AFBB", "#E7B800"),
addEllipses = TRUE, # Concentration ellipses
legend.title = "Groups"
)
dir.create(names(bg)[ni])
ggsave(paste0(names(bg)[ni],"/PCA.png"))
}
#两两组合
group_list = as.character(group_list)
colnames(exp)
x = unique(group_list)
x
cp = list()
nor = 1
for(i in 1:length(x)){
if(i == nor) next
cp[[i]] = cbind(exp[,group_list ==x[[nor]]],
exp[,group_list ==x[[i]]])
names(cp)[i] = x[[i]]
}
cp = cp[-nor]
i = 1
deg = list()
grp =list()
#批量差异分析
for(i in 1:length(cp)){
exps = cp[[i]]
grps = group_list[(group_list == x[nor])|(group_list== names(cp)[i])]
grps = factor(grps,levels = c(x[nor],names(cp)[i]))
grp[[i]] = grps
library(limma)
design=model.matrix(~grps)
fit=lmFit(exps,design)
fit=eBayes(fit)
deg[[i]]=topTable(fit,coef=2,number = Inf)
print(deg[[i]][1,1])
boxplot(exps[rownames(deg[[i]])[1],]~grps)
}
#2.加symbol列,火山图要用
#id转换,查找芯片平台对应的包
anno
#http://www.bio-info-trainee.com/1399.html
#illuminaHumanv2
if(!require(illuminaHumanv2.db)) BiocManager::install("illuminaHumanv2.db")
library(illuminaHumanv2.db)
ids <- toTable(illuminaHumanv2SYMBOL)
head(ids)
library(dplyr)
i = 1
for(i in 1:length(deg)){
#1.加probe_id列
deg[[i]] <- mutate(deg[[i]],probe_id=rownames(deg[[i]]))
#2.id转换
deg[[i]] <- inner_join(deg[[i]],ids,by="probe_id")
print(head(deg[[i]]))
logFC_t=1
#3.change
{
change=ifelse(deg[[i]] $P.Value>0.01,'stable',
ifelse( deg[[i]]$logFC >logFC_t,'up',
ifelse( deg[[i]]$logFC < -logFC_t,'down','stable') )
)
deg[[i]] <- mutate(deg[[i]],change)
head(deg[[i]])
print(table(deg[[i]]$change))
deg[[i]] <- mutate(deg[[i]],v = -log10(P.Value))
}
#4.加ENTREZID列,后面富集分析要用
library(ggplot2)
library(clusterProfiler)
library(org.Hs.eg.db)
s2e <- bitr(unique(deg[[i]]$symbol), fromType = "SYMBOL",
toType = c( "ENTREZID"),
OrgDb = org.Hs.eg.db)
head(s2e)
head(deg[[i]])
deg[[i]] <- inner_join(deg[[i]],s2e,by=c("symbol"="SYMBOL"))
head(deg[[i]])
}
#批量火山图,批量热图
vo = function(x){
p <- ggplot(data = x,
aes(x = logFC,
y = v)) +
geom_point(alpha=0.4, size=3.5,
aes(color=change)) +
scale_color_manual(values=c("blue", "grey","red"))+
geom_vline(xintercept=c(-1,1),lty=4,col="black",lwd=0.8) +
geom_hline(yintercept = -log10(0.01),lty=4,col="black",lwd=0.8) +
theme_bw()
for_label <- x %>%
filter(abs(logFC) >4& P.Value< 0.00001)
p +
geom_point(size = 3, shape = 1, data = for_label) +
ggrepel::geom_label_repel(
aes(label = symbol),
data = for_label,
color="black"
)
ggsave(paste0(names(bg)[ni],"/volcano",k,".png"))
}
y = deg[[1]]
k=1
hp = function(y) {
x = y$logFC
names(x) = y$probe_id
cg = c(names(head(sort(x), 100)),
names(tail(sort(x), 100)))
library(pheatmap)
n = cp[[k]][cg, ]
annotation_col = data.frame(group = grp[[k]])
rownames(annotation_col) = colnames(n)
pdf(file = paste0("heatmap", k, ".pdf"))
test = pheatmap(
n,
show_colnames = F,
show_rownames = F,
scale = "row",
#cluster_cols = F,
annotation_col = annotation_col
)
print(test)
dev.off()
file.copy(paste0("heatmap", k, ".pdf"), paste0(names(bg)[ni], "/", paste0("heatmap", k, ".pdf")))
file.remove(paste0("heatmap", k, ".pdf"))
}
for(k in 1:length(deg)){
vo(deg[[k]])
}
for(k in 1:length(deg)){
hp(deg[[k]])
}