forked from jayxio/YOLO_detector-1
-
Notifications
You must be signed in to change notification settings - Fork 0
/
YOLO_tiny_tf.py
337 lines (260 loc) · 13.1 KB
/
YOLO_tiny_tf.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
import numpy as np
import tensorflow as tf
import cv2
import time
import sys
import os
import pdb
class YOLO_TF:
fromfile = None
fromfolder = None
fromvideo = None
fromstream = None
tofile_img = 'test/output.jpg'
tofile_txt = 'test/output.txt'
imshow = False
filewrite_img = False
filewrite_txt = False
disp_console = False
weights_file = 'weights/YOLO_tiny.ckpt'
alpha = 0.1
threshold = 0.2
iou_threshold = 0.5
num_class = 20
num_box = 2
grid_size = 7
classes = ["aeroplane", "bicycle", "bird", "boat", "bottle", "bus", "car", "cat", "chair", "cow", "diningtable", "dog", "horse", "motorbike", "person", "pottedplant", "sheep", "sofa", "train","tvmonitor"]
# temporary global variables to store pic properties within YOLO_TF
img_path = None
img = None
w_img = None
h_img = None
result = None
def __init__(self,argvs = []):
self.detected = 0
self.overall_pics = 0
self.argv_parser(argvs)
self.build_networks()
def argv_parser(self,argvs):
for i in range(1,len(argvs),2):
if argvs[i] == '-fromfile' : self.fromfile = argvs[i+1]
if argvs[i] == '-fromfolder' : self.fromfolder = argvs[i+1]
if argvs[i] == '-fromvideo' : self.fromvideo = argvs[i+1]
if argvs[i] == '-fromstream' : self.fromstream = argvs[i+1]
if argvs[i] == '-tofile_img' : self.tofile_img = argvs[i+1] ; self.filewrite_img = True
if argvs[i] == '-tofile_txt' : self.tofile_txt = argvs[i+1] ; self.filewrite_txt = True
if argvs[i] == '-imshow' :
if argvs[i+1] == '1' :self.imshow = True
else : self.imshow = False
if argvs[i] == '-disp_console' :
if argvs[i+1] == '1' :self.disp_console = True
else : self.disp_console = False
# build detection network and load weights globally
def build_networks(self):
if self.disp_console : print("Building YOLO_tiny graph...")
self.x = tf.placeholder('float32',[None,448,448,3])
self.conv_1 = self.conv_layer(1,self.x,16,3,1)
self.pool_2 = self.pooling_layer(2,self.conv_1,2,2)
self.conv_3 = self.conv_layer(3,self.pool_2,32,3,1)
self.pool_4 = self.pooling_layer(4,self.conv_3,2,2)
self.conv_5 = self.conv_layer(5,self.pool_4,64,3,1)
self.pool_6 = self.pooling_layer(6,self.conv_5,2,2)
self.conv_7 = self.conv_layer(7,self.pool_6,128,3,1)
self.pool_8 = self.pooling_layer(8,self.conv_7,2,2)
self.conv_9 = self.conv_layer(9,self.pool_8,256,3,1)
self.pool_10 = self.pooling_layer(10,self.conv_9,2,2)
self.conv_11 = self.conv_layer(11,self.pool_10,512,3,1)
self.pool_12 = self.pooling_layer(12,self.conv_11,2,2)
self.conv_13 = self.conv_layer(13,self.pool_12,1024,3,1)
self.conv_14 = self.conv_layer(14,self.conv_13,1024,3,1)
self.conv_15 = self.conv_layer(15,self.conv_14,1024,3,1)
self.fc_16 = self.fc_layer(16,self.conv_15,256,flat=True,linear=False)
self.fc_17 = self.fc_layer(17,self.fc_16,4096,flat=False,linear=False)
#skip dropout_18
self.fc_19 = self.fc_layer(19,self.fc_17,1470,flat=False,linear=True)
self.sess = tf.Session()
self.sess.run(tf.initialize_all_variables())
self.saver = tf.train.Saver()
self.saver.restore(self.sess,self.weights_file)
if self.disp_console : print("Loading complete!" + '\n')
def conv_layer(self,idx,inputs,filters,size,stride):
channels = inputs.get_shape()[3]
weight = tf.Variable(tf.truncated_normal([size,size,int(channels),filters], stddev=0.1))
biases = tf.Variable(tf.constant(0.1, shape=[filters]))
pad_size = size//2
pad_mat = np.array([[0,0],[pad_size,pad_size],[pad_size,pad_size],[0,0]])
inputs_pad = tf.pad(inputs,pad_mat)
conv = tf.nn.conv2d(inputs_pad, weight, strides=[1, stride, stride, 1], padding='VALID',name=str(idx)+'_conv')
conv_biased = tf.add(conv,biases,name=str(idx)+'_conv_biased')
if self.disp_console : print(' Layer %d : Type = Conv, Size = %d * %d, Stride = %d, Filters = %d, Input channels = %d' % (idx,size,size,stride,filters,int(channels)))
return tf.maximum(self.alpha*conv_biased,conv_biased,name=str(idx)+'_leaky_relu')
def pooling_layer(self,idx,inputs,size,stride):
if self.disp_console : print(' Layer %d : Type = Pool, Size = %d * %d, Stride = %d' % (idx,size,size,stride))
return tf.nn.max_pool(inputs, ksize=[1, size, size, 1],strides=[1, stride, stride, 1], padding='SAME',name=str(idx)+'_pool')
def fc_layer(self,idx,inputs,hiddens,flat = False,linear = False):
input_shape = inputs.get_shape().as_list()
if flat:
dim = input_shape[1]*input_shape[2]*input_shape[3]
inputs_transposed = tf.transpose(inputs,(0,3,1,2))
inputs_processed = tf.reshape(inputs_transposed, [-1,dim])
else:
dim = input_shape[1]
inputs_processed = inputs
weight = tf.Variable(tf.truncated_normal([dim,hiddens], stddev=0.1))
biases = tf.Variable(tf.constant(0.1, shape=[hiddens]))
if self.disp_console : print(' Layer %d : Type = Full, Hidden = %d, Input dimension = %d, Flat = %d, Activation = %d' % (idx,hiddens,int(dim),int(flat),1-int(linear)))
if linear : return tf.add(tf.matmul(inputs_processed,weight),biases,name=str(idx)+'_fc')
ip = tf.add(tf.matmul(inputs_processed,weight),biases)
return tf.maximum(self.alpha*ip,ip,name=str(idx)+'_fc')
# get img data and shape info
def _get_img_property(self):
self.img = cv2.imread(self.imgpath)
self.h_img,self.w_img,_ = self.img.shape
return None
# detect from single picture file
def detect(self, imgpath):
if self.disp_console : print('Detect from ' + imgpath)
self.imgpath = imgpath
self._get_img_property()
# consider cv2 imread failure
if img is not None:
s = time.time()
img_resized = cv2.resize(self.img, (448, 448))
img_RGB = cv2.cvtColor(img_resized, cv2.COLOR_BGR2RGB)
img_resized_np = np.asarray(img_RGB)
inputs = np.zeros((1,448,448,3),dtype='float32')
inputs[0] = (img_resized_np/255.0)*2.0-1.0
in_dict = {self.x: inputs}
net_output = self.sess.run(self.fc_19, feed_dict=in_dict)
self.result = self.interpret_output(net_output[0])
resulted_frame = self.show_results(self.result)
strtime = str(time.time()-s)
if self.disp_console : print('Elapsed time : ' + strtime + ' secs' + '\n')
return resulted_frame
# comput iou value
def iou(self,box1,box2):
tb = min(box1[0]+0.5*box1[2],box2[0]+0.5*box2[2])-max(box1[0]-0.5*box1[2],box2[0]-0.5*box2[2])
lr = min(box1[1]+0.5*box1[3],box2[1]+0.5*box2[3])-max(box1[1]-0.5*box1[3],box2[1]-0.5*box2[3])
if tb < 0 or lr < 0 : intersection = 0
else : intersection = tb*lr
return intersection / (box1[2]*box1[3] + box2[2]*box2[3] - intersection)
# inference result from a picture
def interpret_output(self,output):
probs = np.zeros((7,7,2,20))
class_probs = np.reshape(output[0:980],(7,7,20))
scales = np.reshape(output[980:1078],(7,7,2))
boxes = np.reshape(output[1078:],(7,7,2,4))
offset = np.transpose(np.reshape(np.array([np.arange(7)]*14),(2,7,7)),(1,2,0))
boxes[:,:,:,0] += offset
boxes[:,:,:,1] += np.transpose(offset,(1,0,2))
boxes[:,:,:,0:2] = boxes[:,:,:,0:2] / 7.0
boxes[:,:,:,2] = np.multiply(boxes[:,:,:,2],boxes[:,:,:,2])
boxes[:,:,:,3] = np.multiply(boxes[:,:,:,3],boxes[:,:,:,3])
boxes[:,:,:,0] *= self.w_img
boxes[:,:,:,1] *= self.h_img
boxes[:,:,:,2] *= self.w_img
boxes[:,:,:,3] *= self.h_img
for i in range(2):
for j in range(20):
probs[:,:,i,j] = np.multiply(class_probs[:,:,j],scales[:,:,i])
filter_mat_probs = np.array(probs>=self.threshold,dtype='bool')
filter_mat_boxes = np.nonzero(filter_mat_probs)
boxes_filtered = boxes[filter_mat_boxes[0],filter_mat_boxes[1],filter_mat_boxes[2]]
probs_filtered = probs[filter_mat_probs]
classes_num_filtered = np.argmax(filter_mat_probs,axis=3)[filter_mat_boxes[0],filter_mat_boxes[1],filter_mat_boxes[2]]
argsort = np.array(np.argsort(probs_filtered))[::-1]
boxes_filtered = boxes_filtered[argsort]
probs_filtered = probs_filtered[argsort]
classes_num_filtered = classes_num_filtered[argsort]
for i in range(len(boxes_filtered)):
if probs_filtered[i] == 0 : continue
for j in range(i+1,len(boxes_filtered)):
if self.iou(boxes_filtered[i],boxes_filtered[j]) > self.iou_threshold :
probs_filtered[j] = 0.0
filter_iou = np.array(probs_filtered>0.0,dtype='bool')
boxes_filtered = boxes_filtered[filter_iou]
probs_filtered = probs_filtered[filter_iou]
classes_num_filtered = classes_num_filtered[filter_iou]
result = []
for i in range(len(boxes_filtered)):
result.append([self.classes[classes_num_filtered[i]],boxes_filtered[i][0],boxes_filtered[i][1],boxes_filtered[i][2],boxes_filtered[i][3],probs_filtered[i]])
return result
# show results on picture and optional choices for saving
def show_results(self, results):
img_cp = self.img.copy()
if self.filewrite_txt :
ftxt = open(self.tofile_txt,'w')
class_results_set = set()
for i in range(len(results)):
x = int(results[i][1])
y = int(results[i][2])
w = int(results[i][3])//2
h = int(results[i][4])//2
class_results_set.add(results[i][0])
if self.disp_console : print(' class : ' + results[i][0] +
' , [x,y,w,h]=[' + str(x) + ',' + str(y) + ',' +
str(int(results[i][3])) + ',' + str(int(results[i][4])) +
'], Confidence = ' + str(results[i][5]))
# draw bbox
if self.filewrite_img or self.imshow or self.fromstream:
cv2.rectangle(img_cp,(x-w,y-h),(x+w,y+h),(0,255,0),2)
cv2.rectangle(img_cp,(x-w,y-h-20),(x+w,y-h),(125,125,125),-1)
cv2.putText(img_cp,results[i][0] + ' : %.2f' % results[i][5],
(x-w+5,y-h-7),
cv2.FONT_HERSHEY_SIMPLEX,
0.5,(0,0,0),1)
# record bbox info
if self.filewrite_txt :
ftxt.write(results[i][0] + ',' +
str(x) + ',' +
str(y) + ',' +
str(w) + ',' +
str(h)+',' +
str(results[i][5]) + '\n')
if "person" in class_results_set : self.detected+=1
if self.filewrite_img :
filename = self.imgpath.split('/')[-1]
save_path = os.path.join(self.tofile_img,filename)
if self.disp_console : print(' image file writed : ' + save_path)
cv2.imwrite(save_path,img_cp)
if self.imshow :
cv2.imshow('YOLO_tiny detection',img_cp)
cv2.waitKey(1)
if self.filewrite_txt :
if self.disp_console : print(' txt file writed : ' + self.tofile_txt)
ftxt.close()
return img_cp
def training(self): #TODO add training function!
return None
def run(self):
if self.fromfile is not None: self.detect(self.fromfile)
if self.fromfolder is not None:
filename_list = os.listdir(self.fromfolder)
for filename in filename_list:
print("Pics number:",self.overall_pics)
self.overall_pics+=1
self.detect(self.fromfolder+"/"+filename)
print("Accuracy:", self.detected/self.overall_pics)
if self.fromvideo is not None:
pass
if self.fromstream is not None:
cap = cv2.VideoCapture(0)
while(True):
# get a frame
ret, frame = cap.read()
resulted_frame = self.detect(frame)
# show a frame
cv2.imshow("capture", resulted_frame)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
cap.release()
cv2.destroyAllWindows()
return None
def main(argvs):
# init detection process
yolo = YOLO_TF(argvs)
# detect and save
yolo.run()
# cv2.waitKey(8000)
if __name__=='__main__':
main(sys.argv)