forked from cilium/ebpf
-
Notifications
You must be signed in to change notification settings - Fork 0
/
elf_reader.go
1275 lines (1074 loc) · 38.2 KB
/
elf_reader.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
package ebpf
import (
"bufio"
"bytes"
"debug/elf"
"encoding/binary"
"errors"
"fmt"
"io"
"math"
"os"
"strings"
"github.com/cilium/ebpf/asm"
"github.com/cilium/ebpf/btf"
"github.com/cilium/ebpf/internal"
"github.com/cilium/ebpf/internal/unix"
)
const kconfigMap = ".kconfig"
// elfCode is a convenience to reduce the amount of arguments that have to
// be passed around explicitly. You should treat its contents as immutable.
type elfCode struct {
*internal.SafeELFFile
sections map[elf.SectionIndex]*elfSection
license string
version uint32
btf *btf.Spec
extInfo *btf.ExtInfos
maps map[string]*MapSpec
}
// LoadCollectionSpec parses an ELF file into a CollectionSpec.
func LoadCollectionSpec(file string) (*CollectionSpec, error) {
f, err := os.Open(file)
if err != nil {
return nil, err
}
defer f.Close()
spec, err := LoadCollectionSpecFromReader(f)
if err != nil {
return nil, fmt.Errorf("file %s: %w", file, err)
}
return spec, nil
}
// LoadCollectionSpecFromReader parses an ELF file into a CollectionSpec.
func LoadCollectionSpecFromReader(rd io.ReaderAt) (*CollectionSpec, error) {
f, err := internal.NewSafeELFFile(rd)
if err != nil {
return nil, err
}
// Checks if the ELF file is for BPF data.
// Old LLVM versions set e_machine to EM_NONE.
if f.File.Machine != unix.EM_NONE && f.File.Machine != elf.EM_BPF {
return nil, fmt.Errorf("unexpected machine type for BPF ELF: %s", f.File.Machine)
}
var (
licenseSection *elf.Section
versionSection *elf.Section
sections = make(map[elf.SectionIndex]*elfSection)
relSections = make(map[elf.SectionIndex]*elf.Section)
)
// This is the target of relocations generated by inline assembly.
sections[elf.SHN_UNDEF] = newElfSection(new(elf.Section), undefSection)
// Collect all the sections we're interested in. This includes relocations
// which we parse later.
for i, sec := range f.Sections {
idx := elf.SectionIndex(i)
switch {
case strings.HasPrefix(sec.Name, "license"):
licenseSection = sec
case strings.HasPrefix(sec.Name, "version"):
versionSection = sec
case strings.HasPrefix(sec.Name, "maps"):
sections[idx] = newElfSection(sec, mapSection)
case sec.Name == ".maps":
sections[idx] = newElfSection(sec, btfMapSection)
case sec.Name == ".bss" || sec.Name == ".data" || strings.HasPrefix(sec.Name, ".rodata"):
sections[idx] = newElfSection(sec, dataSection)
case sec.Type == elf.SHT_REL:
// Store relocations under the section index of the target
relSections[elf.SectionIndex(sec.Info)] = sec
case sec.Type == elf.SHT_PROGBITS && (sec.Flags&elf.SHF_EXECINSTR) != 0 && sec.Size > 0:
sections[idx] = newElfSection(sec, programSection)
}
}
license, err := loadLicense(licenseSection)
if err != nil {
return nil, fmt.Errorf("load license: %w", err)
}
version, err := loadVersion(versionSection, f.ByteOrder)
if err != nil {
return nil, fmt.Errorf("load version: %w", err)
}
btfSpec, btfExtInfo, err := btf.LoadSpecAndExtInfosFromReader(rd)
if err != nil && !errors.Is(err, btf.ErrNotFound) {
return nil, fmt.Errorf("load BTF: %w", err)
}
ec := &elfCode{
SafeELFFile: f,
sections: sections,
license: license,
version: version,
btf: btfSpec,
extInfo: btfExtInfo,
maps: make(map[string]*MapSpec),
}
symbols, err := f.Symbols()
if err != nil {
return nil, fmt.Errorf("load symbols: %v", err)
}
ec.assignSymbols(symbols)
if err := ec.loadRelocations(relSections, symbols); err != nil {
return nil, fmt.Errorf("load relocations: %w", err)
}
if err := ec.loadMaps(); err != nil {
return nil, fmt.Errorf("load maps: %w", err)
}
if err := ec.loadBTFMaps(); err != nil {
return nil, fmt.Errorf("load BTF maps: %w", err)
}
if err := ec.loadDataSections(); err != nil {
return nil, fmt.Errorf("load data sections: %w", err)
}
if err := ec.loadVirtualDataSections(); err != nil {
return nil, fmt.Errorf("load virtual data sections: %w", err)
}
// Finally, collect programs and link them.
progs, err := ec.loadProgramSections()
if err != nil {
return nil, fmt.Errorf("load programs: %w", err)
}
return &CollectionSpec{ec.maps, progs, btfSpec, ec.ByteOrder}, nil
}
func loadLicense(sec *elf.Section) (string, error) {
if sec == nil {
return "", nil
}
data, err := sec.Data()
if err != nil {
return "", fmt.Errorf("section %s: %v", sec.Name, err)
}
return string(bytes.TrimRight(data, "\000")), nil
}
func loadVersion(sec *elf.Section, bo binary.ByteOrder) (uint32, error) {
if sec == nil {
return 0, nil
}
var version uint32
if err := binary.Read(sec.Open(), bo, &version); err != nil {
return 0, fmt.Errorf("section %s: %v", sec.Name, err)
}
return version, nil
}
type elfSectionKind int
const (
undefSection elfSectionKind = iota
mapSection
btfMapSection
programSection
dataSection
)
type elfSection struct {
*elf.Section
kind elfSectionKind
// Offset from the start of the section to a symbol
symbols map[uint64]elf.Symbol
// Offset from the start of the section to a relocation, which points at
// a symbol in another section.
relocations map[uint64]elf.Symbol
// The number of relocations pointing at this section.
references int
}
func newElfSection(section *elf.Section, kind elfSectionKind) *elfSection {
return &elfSection{
section,
kind,
make(map[uint64]elf.Symbol),
make(map[uint64]elf.Symbol),
0,
}
}
// assignSymbols takes a list of symbols and assigns them to their
// respective sections, indexed by name.
func (ec *elfCode) assignSymbols(symbols []elf.Symbol) {
for _, symbol := range symbols {
symType := elf.ST_TYPE(symbol.Info)
symSection := ec.sections[symbol.Section]
if symSection == nil {
continue
}
// Anonymous symbols only occur in debug sections which we don't process
// relocations for. Anonymous symbols are not referenced from other sections.
if symbol.Name == "" {
continue
}
// Older versions of LLVM don't tag symbols correctly, so keep
// all NOTYPE ones.
switch symSection.kind {
case mapSection, btfMapSection, dataSection:
if symType != elf.STT_NOTYPE && symType != elf.STT_OBJECT {
continue
}
case programSection:
if symType != elf.STT_NOTYPE && symType != elf.STT_FUNC {
continue
}
// LLVM emits LBB_ (Local Basic Block) symbols that seem to be jump
// targets within sections, but BPF has no use for them.
if symType == elf.STT_NOTYPE && elf.ST_BIND(symbol.Info) == elf.STB_LOCAL &&
strings.HasPrefix(symbol.Name, "LBB") {
continue
}
// Only collect symbols that occur in program/maps/data sections.
default:
continue
}
symSection.symbols[symbol.Value] = symbol
}
}
// loadRelocations iterates .rel* sections and extracts relocation entries for
// sections of interest. Makes sure relocations point at valid sections.
func (ec *elfCode) loadRelocations(relSections map[elf.SectionIndex]*elf.Section, symbols []elf.Symbol) error {
for idx, relSection := range relSections {
section := ec.sections[idx]
if section == nil {
continue
}
rels, err := ec.loadSectionRelocations(relSection, symbols)
if err != nil {
return fmt.Errorf("relocation for section %q: %w", section.Name, err)
}
for _, rel := range rels {
target := ec.sections[rel.Section]
if target == nil {
return fmt.Errorf("section %q: reference to %q in section %s: %w", section.Name, rel.Name, rel.Section, ErrNotSupported)
}
target.references++
}
section.relocations = rels
}
return nil
}
// loadProgramSections iterates ec's sections and emits a ProgramSpec
// for each function it finds.
//
// The resulting map is indexed by function name.
func (ec *elfCode) loadProgramSections() (map[string]*ProgramSpec, error) {
progs := make(map[string]*ProgramSpec)
// Generate a ProgramSpec for each function found in each program section.
var export []string
for _, sec := range ec.sections {
if sec.kind != programSection {
continue
}
if len(sec.symbols) == 0 {
return nil, fmt.Errorf("section %v: missing symbols", sec.Name)
}
funcs, err := ec.loadFunctions(sec)
if err != nil {
return nil, fmt.Errorf("section %v: %w", sec.Name, err)
}
progType, attachType, progFlags, attachTo := getProgType(sec.Name)
for name, insns := range funcs {
spec := &ProgramSpec{
Name: name,
Type: progType,
Flags: progFlags,
AttachType: attachType,
AttachTo: attachTo,
SectionName: sec.Name,
License: ec.license,
KernelVersion: ec.version,
Instructions: insns,
ByteOrder: ec.ByteOrder,
}
// Function names must be unique within a single ELF blob.
if progs[name] != nil {
return nil, fmt.Errorf("duplicate program name %s", name)
}
progs[name] = spec
if spec.SectionName != ".text" {
export = append(export, name)
}
}
}
flattenPrograms(progs, export)
// Hide programs (e.g. library functions) that were not explicitly emitted
// to an ELF section. These could be exposed in a separate CollectionSpec
// field later to allow them to be modified.
for n, p := range progs {
if p.SectionName == ".text" {
delete(progs, n)
}
}
return progs, nil
}
// loadFunctions extracts instruction streams from the given program section
// starting at each symbol in the section. The section's symbols must already
// be narrowed down to STT_NOTYPE (emitted by clang <8) or STT_FUNC.
//
// The resulting map is indexed by function name.
func (ec *elfCode) loadFunctions(section *elfSection) (map[string]asm.Instructions, error) {
r := bufio.NewReader(section.Open())
// Decode the section's instruction stream.
var insns asm.Instructions
if err := insns.Unmarshal(r, ec.ByteOrder); err != nil {
return nil, fmt.Errorf("decoding instructions for section %s: %w", section.Name, err)
}
if len(insns) == 0 {
return nil, fmt.Errorf("no instructions found in section %s", section.Name)
}
iter := insns.Iterate()
for iter.Next() {
ins := iter.Ins
offset := iter.Offset.Bytes()
// Tag Symbol Instructions.
if sym, ok := section.symbols[offset]; ok {
*ins = ins.WithSymbol(sym.Name)
}
// Apply any relocations for the current instruction.
// If no relocation is present, resolve any section-relative function calls.
if rel, ok := section.relocations[offset]; ok {
if err := ec.relocateInstruction(ins, rel); err != nil {
return nil, fmt.Errorf("offset %d: relocating instruction: %w", offset, err)
}
} else {
if err := referenceRelativeJump(ins, offset, section.symbols); err != nil {
return nil, fmt.Errorf("offset %d: resolving relative jump: %w", offset, err)
}
}
}
if ec.extInfo != nil {
ec.extInfo.Assign(insns, section.Name)
}
return splitSymbols(insns)
}
// referenceRelativeJump turns a relative jump to another bpf subprogram within
// the same ELF section into a Reference Instruction.
//
// Up to LLVM 9, calls to subprograms within the same ELF section are sometimes
// encoded using relative jumps instead of relocation entries. These jumps go
// out of bounds of the current program, so their targets must be memoized
// before the section's instruction stream is split.
//
// The relative jump Constant is blinded to -1 and the target Symbol is set as
// the Instruction's Reference so it can be resolved by the linker.
func referenceRelativeJump(ins *asm.Instruction, offset uint64, symbols map[uint64]elf.Symbol) error {
if !ins.IsFunctionReference() || ins.Constant == -1 {
return nil
}
tgt := jumpTarget(offset, *ins)
sym := symbols[tgt].Name
if sym == "" {
return fmt.Errorf("no jump target found at offset %d", tgt)
}
*ins = ins.WithReference(sym)
ins.Constant = -1
return nil
}
// jumpTarget takes ins' offset within an instruction stream (in bytes)
// and returns its absolute jump destination (in bytes) within the
// instruction stream.
func jumpTarget(offset uint64, ins asm.Instruction) uint64 {
// A relative jump instruction describes the amount of raw BPF instructions
// to jump, convert the offset into bytes.
dest := ins.Constant * asm.InstructionSize
// The starting point of the jump is the end of the current instruction.
dest += int64(offset + asm.InstructionSize)
if dest < 0 {
return 0
}
return uint64(dest)
}
func (ec *elfCode) relocateInstruction(ins *asm.Instruction, rel elf.Symbol) error {
var (
typ = elf.ST_TYPE(rel.Info)
bind = elf.ST_BIND(rel.Info)
name = rel.Name
)
target := ec.sections[rel.Section]
switch target.kind {
case mapSection, btfMapSection:
if bind != elf.STB_GLOBAL {
return fmt.Errorf("possible erroneous static qualifier on map definition: found reference to %q", name)
}
if typ != elf.STT_OBJECT && typ != elf.STT_NOTYPE {
// STT_NOTYPE is generated on clang < 8 which doesn't tag
// relocations appropriately.
return fmt.Errorf("map load: incorrect relocation type %v", typ)
}
ins.Src = asm.PseudoMapFD
case dataSection:
var offset uint32
switch typ {
case elf.STT_SECTION:
if bind != elf.STB_LOCAL {
return fmt.Errorf("direct load: %s: unsupported section relocation %s", name, bind)
}
// This is really a reference to a static symbol, which clang doesn't
// emit a symbol table entry for. Instead it encodes the offset in
// the instruction itself.
offset = uint32(uint64(ins.Constant))
case elf.STT_OBJECT:
// LLVM 9 emits OBJECT-LOCAL symbols for anonymous constants.
if bind != elf.STB_GLOBAL && bind != elf.STB_LOCAL {
return fmt.Errorf("direct load: %s: unsupported object relocation %s", name, bind)
}
offset = uint32(rel.Value)
case elf.STT_NOTYPE:
// LLVM 7 emits NOTYPE-LOCAL symbols for anonymous constants.
if bind != elf.STB_LOCAL {
return fmt.Errorf("direct load: %s: unsupported untyped relocation %s", name, bind)
}
offset = uint32(rel.Value)
default:
return fmt.Errorf("incorrect relocation type %v for direct map load", typ)
}
// We rely on using the name of the data section as the reference. It
// would be nicer to keep the real name in case of an STT_OBJECT, but
// it's not clear how to encode that into Instruction.
name = target.Name
// The kernel expects the offset in the second basic BPF instruction.
ins.Constant = int64(uint64(offset) << 32)
ins.Src = asm.PseudoMapValue
case programSection:
switch opCode := ins.OpCode; {
case opCode.JumpOp() == asm.Call:
if ins.Src != asm.PseudoCall {
return fmt.Errorf("call: %s: incorrect source register", name)
}
switch typ {
case elf.STT_NOTYPE, elf.STT_FUNC:
if bind != elf.STB_GLOBAL {
return fmt.Errorf("call: %s: unsupported binding: %s", name, bind)
}
case elf.STT_SECTION:
if bind != elf.STB_LOCAL {
return fmt.Errorf("call: %s: unsupported binding: %s", name, bind)
}
// The function we want to call is in the indicated section,
// at the offset encoded in the instruction itself. Reverse
// the calculation to find the real function we're looking for.
// A value of -1 references the first instruction in the section.
offset := int64(int32(ins.Constant)+1) * asm.InstructionSize
sym, ok := target.symbols[uint64(offset)]
if !ok {
return fmt.Errorf("call: no symbol at offset %d", offset)
}
name = sym.Name
ins.Constant = -1
default:
return fmt.Errorf("call: %s: invalid symbol type %s", name, typ)
}
case opCode.IsDWordLoad():
switch typ {
case elf.STT_FUNC:
if bind != elf.STB_GLOBAL {
return fmt.Errorf("load: %s: unsupported binding: %s", name, bind)
}
case elf.STT_SECTION:
if bind != elf.STB_LOCAL {
return fmt.Errorf("load: %s: unsupported binding: %s", name, bind)
}
// ins.Constant already contains the offset in bytes from the
// start of the section. This is different than a call to a
// static function.
default:
return fmt.Errorf("load: %s: invalid symbol type %s", name, typ)
}
sym, ok := target.symbols[uint64(ins.Constant)]
if !ok {
return fmt.Errorf("load: no symbol at offset %d", ins.Constant)
}
name = sym.Name
ins.Constant = -1
ins.Src = asm.PseudoFunc
default:
return fmt.Errorf("neither a call nor a load instruction: %v", ins)
}
// The Undefined section is used for 'virtual' symbols that aren't backed by
// an ELF section. This includes symbol references from inline asm, forward
// function declarations, as well as extern kfunc declarations using __ksym
// and extern kconfig variables declared using __kconfig.
case undefSection:
if bind != elf.STB_GLOBAL {
return fmt.Errorf("asm relocation: %s: unsupported binding: %s", name, bind)
}
if typ != elf.STT_NOTYPE {
return fmt.Errorf("asm relocation: %s: unsupported type %s", name, typ)
}
// If no kconfig map is found, this must be a symbol reference from inline
// asm (see testdata/loader.c:asm_relocation()) or a call to a forward
// function declaration (see testdata/fwd_decl.c). Don't interfere, these
// remain standard symbol references.
kc := ec.maps[kconfigMap]
if kc == nil {
break
}
// extern __kconfig reads are represented as dword loads that need to be
// rewritten to pseudo map loads from .kconfig. If the map is present,
// require it to contain the symbol to disambiguate between inline asm
// relos and kconfigs.
if ins.OpCode.IsDWordLoad() {
var found bool
for _, vsi := range kc.Value.(*btf.Datasec).Vars {
if vsi.Type.(*btf.Var).Name != rel.Name {
continue
}
// Encode a map read at the offset of the var in the datasec.
ins.Constant = int64(uint64(vsi.Offset) << 32)
ins.Src = asm.PseudoMapValue
name = kconfigMap
found = true
break
}
if !found {
return fmt.Errorf("kconfig %s not found in %s", rel.Name, kconfigMap)
}
}
default:
return fmt.Errorf("relocation to %q: %w", target.Name, ErrNotSupported)
}
*ins = ins.WithReference(name)
return nil
}
func (ec *elfCode) loadMaps() error {
for _, sec := range ec.sections {
if sec.kind != mapSection {
continue
}
nSym := len(sec.symbols)
if nSym == 0 {
return fmt.Errorf("section %v: no symbols", sec.Name)
}
if sec.Size%uint64(nSym) != 0 {
return fmt.Errorf("section %v: map descriptors are not of equal size", sec.Name)
}
var (
r = bufio.NewReader(sec.Open())
size = sec.Size / uint64(nSym)
)
for i, offset := 0, uint64(0); i < nSym; i, offset = i+1, offset+size {
mapSym, ok := sec.symbols[offset]
if !ok {
return fmt.Errorf("section %s: missing symbol for map at offset %d", sec.Name, offset)
}
mapName := mapSym.Name
if ec.maps[mapName] != nil {
return fmt.Errorf("section %v: map %v already exists", sec.Name, mapSym)
}
lr := io.LimitReader(r, int64(size))
spec := MapSpec{
Name: SanitizeName(mapName, -1),
}
switch {
case binary.Read(lr, ec.ByteOrder, &spec.Type) != nil:
return fmt.Errorf("map %s: missing type", mapName)
case binary.Read(lr, ec.ByteOrder, &spec.KeySize) != nil:
return fmt.Errorf("map %s: missing key size", mapName)
case binary.Read(lr, ec.ByteOrder, &spec.ValueSize) != nil:
return fmt.Errorf("map %s: missing value size", mapName)
case binary.Read(lr, ec.ByteOrder, &spec.MaxEntries) != nil:
return fmt.Errorf("map %s: missing max entries", mapName)
case binary.Read(lr, ec.ByteOrder, &spec.Flags) != nil:
return fmt.Errorf("map %s: missing flags", mapName)
}
extra, err := io.ReadAll(lr)
if err != nil {
return fmt.Errorf("map %s: reading map tail: %w", mapName, err)
}
if len(extra) > 0 {
spec.Extra = bytes.NewReader(extra)
}
if err := spec.clampPerfEventArraySize(); err != nil {
return fmt.Errorf("map %s: %w", mapName, err)
}
ec.maps[mapName] = &spec
}
}
return nil
}
// loadBTFMaps iterates over all ELF sections marked as BTF map sections
// (like .maps) and parses them into MapSpecs. Dump the .maps section and
// any relocations with `readelf -x .maps -r <elf_file>`.
func (ec *elfCode) loadBTFMaps() error {
for _, sec := range ec.sections {
if sec.kind != btfMapSection {
continue
}
if ec.btf == nil {
return fmt.Errorf("missing BTF")
}
// Each section must appear as a DataSec in the ELF's BTF blob.
var ds *btf.Datasec
if err := ec.btf.TypeByName(sec.Name, &ds); err != nil {
return fmt.Errorf("cannot find section '%s' in BTF: %w", sec.Name, err)
}
// Open a Reader to the ELF's raw section bytes so we can assert that all
// of them are zero on a per-map (per-Var) basis. For now, the section's
// sole purpose is to receive relocations, so all must be zero.
rs := sec.Open()
for _, vs := range ds.Vars {
// BPF maps are declared as and assigned to global variables,
// so iterate over each Var in the DataSec and validate their types.
v, ok := vs.Type.(*btf.Var)
if !ok {
return fmt.Errorf("section %v: unexpected type %s", sec.Name, vs.Type)
}
name := string(v.Name)
// The BTF metadata for each Var contains the full length of the map
// declaration, so read the corresponding amount of bytes from the ELF.
// This way, we can pinpoint which map declaration contains unexpected
// (and therefore unsupported) data.
_, err := io.Copy(internal.DiscardZeroes{}, io.LimitReader(rs, int64(vs.Size)))
if err != nil {
return fmt.Errorf("section %v: map %s: initializing BTF map definitions: %w", sec.Name, name, internal.ErrNotSupported)
}
if ec.maps[name] != nil {
return fmt.Errorf("section %v: map %s already exists", sec.Name, name)
}
// Each Var representing a BTF map definition contains a Struct.
mapStruct, ok := v.Type.(*btf.Struct)
if !ok {
return fmt.Errorf("expected struct, got %s", v.Type)
}
mapSpec, err := mapSpecFromBTF(sec, &vs, mapStruct, ec.btf, name, false)
if err != nil {
return fmt.Errorf("map %v: %w", name, err)
}
if err := mapSpec.clampPerfEventArraySize(); err != nil {
return fmt.Errorf("map %v: %w", name, err)
}
ec.maps[name] = mapSpec
}
// Drain the ELF section reader to make sure all bytes are accounted for
// with BTF metadata.
i, err := io.Copy(io.Discard, rs)
if err != nil {
return fmt.Errorf("section %v: unexpected error reading remainder of ELF section: %w", sec.Name, err)
}
if i > 0 {
return fmt.Errorf("section %v: %d unexpected remaining bytes in ELF section, invalid BTF?", sec.Name, i)
}
}
return nil
}
// mapSpecFromBTF produces a MapSpec based on a btf.Struct def representing
// a BTF map definition. The name and spec arguments will be copied to the
// resulting MapSpec, and inner must be true on any resursive invocations.
func mapSpecFromBTF(es *elfSection, vs *btf.VarSecinfo, def *btf.Struct, spec *btf.Spec, name string, inner bool) (*MapSpec, error) {
var (
key, value btf.Type
keySize, valueSize uint32
mapType MapType
flags, maxEntries uint32
pinType PinType
innerMapSpec *MapSpec
contents []MapKV
err error
)
for i, member := range def.Members {
switch member.Name {
case "type":
mt, err := uintFromBTF(member.Type)
if err != nil {
return nil, fmt.Errorf("can't get type: %w", err)
}
mapType = MapType(mt)
case "map_flags":
flags, err = uintFromBTF(member.Type)
if err != nil {
return nil, fmt.Errorf("can't get BTF map flags: %w", err)
}
case "max_entries":
maxEntries, err = uintFromBTF(member.Type)
if err != nil {
return nil, fmt.Errorf("can't get BTF map max entries: %w", err)
}
case "key":
if keySize != 0 {
return nil, errors.New("both key and key_size given")
}
pk, ok := member.Type.(*btf.Pointer)
if !ok {
return nil, fmt.Errorf("key type is not a pointer: %T", member.Type)
}
key = pk.Target
size, err := btf.Sizeof(pk.Target)
if err != nil {
return nil, fmt.Errorf("can't get size of BTF key: %w", err)
}
keySize = uint32(size)
case "value":
if valueSize != 0 {
return nil, errors.New("both value and value_size given")
}
vk, ok := member.Type.(*btf.Pointer)
if !ok {
return nil, fmt.Errorf("value type is not a pointer: %T", member.Type)
}
value = vk.Target
size, err := btf.Sizeof(vk.Target)
if err != nil {
return nil, fmt.Errorf("can't get size of BTF value: %w", err)
}
valueSize = uint32(size)
case "key_size":
// Key needs to be nil and keySize needs to be 0 for key_size to be
// considered a valid member.
if key != nil || keySize != 0 {
return nil, errors.New("both key and key_size given")
}
keySize, err = uintFromBTF(member.Type)
if err != nil {
return nil, fmt.Errorf("can't get BTF key size: %w", err)
}
case "value_size":
// Value needs to be nil and valueSize needs to be 0 for value_size to be
// considered a valid member.
if value != nil || valueSize != 0 {
return nil, errors.New("both value and value_size given")
}
valueSize, err = uintFromBTF(member.Type)
if err != nil {
return nil, fmt.Errorf("can't get BTF value size: %w", err)
}
case "pinning":
if inner {
return nil, errors.New("inner maps can't be pinned")
}
pinning, err := uintFromBTF(member.Type)
if err != nil {
return nil, fmt.Errorf("can't get pinning: %w", err)
}
pinType = PinType(pinning)
case "values":
// The 'values' field in BTF map definitions is used for declaring map
// value types that are references to other BPF objects, like other maps
// or programs. It is always expected to be an array of pointers.
if i != len(def.Members)-1 {
return nil, errors.New("'values' must be the last member in a BTF map definition")
}
if valueSize != 0 && valueSize != 4 {
return nil, errors.New("value_size must be 0 or 4")
}
valueSize = 4
valueType, err := resolveBTFArrayMacro(member.Type)
if err != nil {
return nil, fmt.Errorf("can't resolve type of member 'values': %w", err)
}
switch t := valueType.(type) {
case *btf.Struct:
// The values member pointing to an array of structs means we're expecting
// a map-in-map declaration.
if mapType != ArrayOfMaps && mapType != HashOfMaps {
return nil, errors.New("outer map needs to be an array or a hash of maps")
}
if inner {
return nil, fmt.Errorf("nested inner maps are not supported")
}
// This inner map spec is used as a map template, but it needs to be
// created as a traditional map before it can be used to do so.
// libbpf names the inner map template '<outer_name>.inner', but we
// opted for _inner to simplify validation logic. (dots only supported
// on kernels 5.2 and up)
// Pass the BTF spec from the parent object, since both parent and
// child must be created from the same BTF blob (on kernels that support BTF).
innerMapSpec, err = mapSpecFromBTF(es, vs, t, spec, name+"_inner", true)
if err != nil {
return nil, fmt.Errorf("can't parse BTF map definition of inner map: %w", err)
}
case *btf.FuncProto:
// The values member contains an array of function pointers, meaning an
// autopopulated PROG_ARRAY.
if mapType != ProgramArray {
return nil, errors.New("map needs to be a program array")
}
default:
return nil, fmt.Errorf("unsupported value type %q in 'values' field", t)
}
contents, err = resolveBTFValuesContents(es, vs, member)
if err != nil {
return nil, fmt.Errorf("resolving values contents: %w", err)
}
default:
return nil, fmt.Errorf("unrecognized field %s in BTF map definition", member.Name)
}
}
return &MapSpec{
Name: SanitizeName(name, -1),
Type: MapType(mapType),
KeySize: keySize,
ValueSize: valueSize,
MaxEntries: maxEntries,
Flags: flags,
Key: key,
Value: value,
Pinning: pinType,
InnerMap: innerMapSpec,
Contents: contents,
}, nil
}
// uintFromBTF resolves the __uint macro, which is a pointer to a sized
// array, e.g. for int (*foo)[10], this function will return 10.
func uintFromBTF(typ btf.Type) (uint32, error) {
ptr, ok := typ.(*btf.Pointer)
if !ok {
return 0, fmt.Errorf("not a pointer: %v", typ)
}
arr, ok := ptr.Target.(*btf.Array)
if !ok {
return 0, fmt.Errorf("not a pointer to array: %v", typ)
}
return arr.Nelems, nil
}
// resolveBTFArrayMacro resolves the __array macro, which declares an array
// of pointers to a given type. This function returns the target Type of
// the pointers in the array.
func resolveBTFArrayMacro(typ btf.Type) (btf.Type, error) {
arr, ok := typ.(*btf.Array)
if !ok {
return nil, fmt.Errorf("not an array: %v", typ)
}
ptr, ok := arr.Type.(*btf.Pointer)
if !ok {
return nil, fmt.Errorf("not an array of pointers: %v", typ)
}
return ptr.Target, nil
}
// resolveBTFValuesContents resolves relocations into ELF sections belonging
// to btf.VarSecinfo's. This can be used on the 'values' member in BTF map
// definitions to extract static declarations of map contents.
func resolveBTFValuesContents(es *elfSection, vs *btf.VarSecinfo, member btf.Member) ([]MapKV, error) {
// The elements of a .values pointer array are not encoded in BTF.
// Instead, relocations are generated into each array index.