Skip to content

Latest commit

 

History

History
408 lines (307 loc) · 10.8 KB

README.md

File metadata and controls

408 lines (307 loc) · 10.8 KB

DecoherenceLab - Quantum Circuit Simulator

A sophisticated web-based quantum circuit simulator designed for experimenting with noisy intermediate-scale quantum (NISQ) environments. This project combines a Next.js frontend with a Python backend to provide an interactive platform for quantum circuit design, simulation, and visualization.

Features

  • Circuit Design & Simulation:
    • Interactive Circuit Designer: Drag-and-drop interface for building quantum circuits.
    • Real-time Simulation: Instant visualization of quantum states.
    • Gate Support:
      • Single-qubit gates: I (Identity), X, Y, Z, H (Hadamard), S, T
      • Two-qubit gates: CNOT (Controlled-NOT)
  • Visualization Tools:
    • Density Matrix Visualization:
      • 3D bar plots with:
        • Magnitude representation through bar height.
        • Phase representation using a rainbow colormap.
        • Interactive viewing angles.
  • Error Analysis:
    • Noise Model Integration:
      • Custom noise model support.
      • Depolarizing channel simulation.
    • Error Propagation:
      • Automated error gate propagation through quantum layers.
      • Error simplification using Pauli operator algebra.
      • Visual representation of error effects.

Button Functions

Circuit Manipulation

  • Add Wire: Adds a new qubit wire to the circuit (up to maximum 8 qubits). Each wire represents a quantum bit that can be manipulated using quantum gates.

  • Reset Circuit: Clears all gates from the current circuit, returning it to an empty state while maintaining the current number of qubits. This is useful when you want to start a new circuit design from scratch.

Noise Model Controls

  • Load Noise Model: Opens a file upload dialog to import a custom noise model in .npy format (saved via np.save(kraus_operators)). The noise model should contain Kraus operators that define the quantum channel's noise characteristics. The uploaded model must satisfy:

    • Valid JSON syntax
    • Square matrices with matching dimensions
    • Sum of E_i * E_i^† equals identity matrix (completeness relation)
  • Reset Noise Model: Removes the currently loaded noise model, returning the simulator to default noise model (depolarizing noise on each qubit, p=1e-3).

Simulation Controls

  • Generate Results: Executes the quantum circuit simulation and displays the results through:

    • 3D density matrix visualization
    • Magnitude representation through bar heights
    • Phase information encoded in color The simulation takes into account any loaded noise models.
  • Propagate Error: Analyzes how errors propagate through the circuit by:

    • Converting error gates into equivalent Pauli operations

    • Simplifying error combinations using Pauli operator algebra

    • Displaying the resulting error-propagated circuit

      This helps in understanding how noise affects the quantum computation at each stage.

Installation

Prerequisites

  • Python 3.x
  • Node.js (Latest LTS version)
  • npm or yarn

Setup

  1. Clone the repository:
bash
git clone https://github.com/yale-swe/f24-nisq-quantum-simulator/
cd f24-nisq-quantum-simulator
  1. Install Python dependencies: pip install -r requirements.txt

  2. Install JavaScript dependencies:

cd frontend-interface
npm install

Usage

Local Development

  1. Start the development server:

npm run dev:website

  1. Access the application at:

http://localhost:3000

Live Deployment

The application is deployed and accessible at: https://nisq-simulator-a24607e46084.herokuapp.com/

This live version provides all features of the quantum circuit simulator without requiring local installation.

Project Structure

f24-nisq-quantum-simulator/
├── .github/                    # GitHub specific configurations
│   └── workflows/             # CI/CD workflow configurations
│       ├── coverage_workflow.yml
│       └── test_workflow.yml
│
├── frontend-interface/        # Next.js frontend application
│   ├── app/                  # Next.js app directory
│   │   ├── api/             # API endpoints
│   │   ├── globals.css      # Global styles
│   │   ├── layout.js        # App layout
│   │   └── page.js         # Homepage
│   ├── components/          # React components
│   │   ├── DensityPlot.js
│   │   ├── DragAndDropGrid.js
│   │   ├── LoadingOverlay.js
│   │   └── NoiseModel.js
│   ├── data/                # Data files
│   │   └── stats.txt
│   ├── public/             # Static assets
│   │   └── icons/
│   ├── .env.local          # Local environment variables
│   ├── jest.config.js      # Jest testing configuration
│   ├── jest.setup.js       # Jest setup file
│   ├── jsconfig.json       # JavaScript configuration
│   └── next.config.mjs     # Next.js configuration
│
├── backend/                 # Python backend
│   ├── __init__.py
│   ├── error_propagation.py
│   ├── error_step_propagator.py
│   ├── quantum_simulator.py
│   ├── utils.py
│   ├── test_error_propagation.py
│   ├── test_error_step_propagator.py
│   ├── test_evolution.py
│   └── test_utils.py
│
├── visualizations/          # Visualization tools
│   ├── __init__.py
│   └── Density_Plot.py
│
├── .gitignore
├── babel.config.js         # Babel configuration
├── package.json           # Node.js dependencies and scripts
├── render.yaml            # Render deployment configuration
└── requirements.txt       # Python dependencies

Technical Details

  • Quantum Simulation:
    • Density matrix evolution using QuTiP.
    • Custom intermediate representation for quantum circuits.
    • Support for noise models and error propagation.
  • Visualization Engine:
    • 3D visualization using Matplotlib.
    • Interactive plots with customizable views.
    • Phase and magnitude representation.
  • Error Handling:
    • Pauli error propagation.
    • Error gate simplification.
    • Comprehensive error reporting.

Testing

This project maintains high test coverage (94%) with comprehensive unit tests:

# Run tests
python -m unittest backend/test_evolution.py

# View coverage report
coverage run -m unittest discover
coverage report

Guide to Add Tests

Backend Testing (Python)

The backend uses Python's unittest framework. Tests are located in the backend/ directory with files prefixed by test_.

Adding Python Tests

  1. Create a new test file in the backend/ directory with prefix test_:
# test_your_module.py
import unittest

class TestYourModule(unittest.TestCase):
    def setUp(self):
        # Setup code runs before each test
        pass
        
    def test_your_feature(self):
        # Your test code here
        expected = ...
        actual = ...
        self.assertEqual(expected, actual)

Common Testing Patterns

For quantum state verification:

def assertStateAlmostEqual(self, state1, state2):
    np.testing.assert_allclose(
        state1.full(), 
        state2.full(), 
        atol=5e-4,  # Absolute tolerance
        rtol=5e-4   # Relative tolerance
    )

For error handling:

def test_error_case(self):
    with self.assertRaises(ExpectedError):
        # Code that should raise error
        pass

Running Backend Tests

# Run all tests
python -m unittest discover backend/

# Run specific test file
python -m unittest backend/test_your_module.py

# Run with coverage
coverage run -m unittest discover
coverage report

Frontend Testing (JavaScript/Jest)

The frontend uses Jest with jsdom environment. Tests are located alongside components with .test.js or .spec.js extensions.

Adding Frontend Tests

Create a test file next to your component:

// YourComponent.test.js
import { render, screen, fireEvent } from '@testing-library/react'
import YourComponent from './YourComponent'

describe('YourComponent', () => {
    beforeEach(() => {
        // Setup code
    })

    it('should render correctly', () => {
        render(<YourComponent />)
        expect(screen.getByText('expected text')).toBeInTheDocument()
    })

    it('should handle user interactions', () => {
        render(<YourComponent />)
        fireEvent.click(screen.getByRole('button'))
        // Assert expected behavior
    })
})

Common Testing Patterns

Testing API calls:

it('handles API calls', async () => {
    global.fetch = jest.fn(() => 
        Promise.resolve({
            ok: true,
            json: () => Promise.resolve({ data: 'test' })
        })
    )
    
    // Test component with mocked fetch
})

Testing drag and drop:

it('handles drag and drop', () => {
    const { container } = render(<YourComponent />)
    fireEvent.dragStart(screen.getByTestId('draggable'))
    fireEvent.drop(screen.getByTestId('droppable'))
    // Assert expected state changes
})

Running Frontend Tests

# Run all tests
npm test

# Run tests with coverage
npm test -- --coverage

# Run specific test file
npm test -- YourComponent.test.js

# Run tests in watch mode
npm test -- --watch

Test Configuration Files

  • Backend: No specific configuration needed for unittest
  • Frontend: Configuration in frontend-interface/jest.config.js:
module.exports = {
  testEnvironment: 'jsdom',
  setupFiles: ['./jest.setup.js'],
  testMatch: ['**/__tests__/**/*.js?(x)', '**/?(*.)+(spec|test).js?(x)']
}

Best Practices

Test file naming

  • Backend: test_*.py
  • Frontend: .test.js or.spec.js

Test organization

  • Group related tests using descriptive names
  • Use setup/teardown methods for common operations
  • Test both success and error cases
  • Mock external dependencies

Coverage goals

  • Maintain minimum 90% coverage
  • Focus on critical paths and error handling
  • Include edge cases and boundary conditions

Technologies Used

  • Frontend:
    • Next.js 14
    • React 18
    • mathjs
    • @hello-pangea/dnd
  • Backend:
    • NumPy
    • QuTiP
    • Matplotlib
    • Plotly
    • Qiskit

Contributing

  1. Fork the repository.
  2. Create a feature branch:
git checkout -b feature/YourFeature
  1. Commit your changes:
git commit -m 'Add YourFeature'
  1. Push to your branch:
git push origin feature/YourFeature
  1. Submit a Pull Request.

License

This project is maintained as a private repository. Contact the repository owners for usage permissions.

Support

For issues and feature requests, please use the GitHub issue tracker or contact the development team.

Acknowledgments

  • Built with Next.js and Python.
  • Quantum computing libraries: Qiskit, QuTiP.
  • Visualization tools: Matplotlib, Plotly.

Contact

Project Link: https://github.com/yale-swe/f24-nisq-quantum-simulator