Skip to content

Latest commit

 

History

History
211 lines (162 loc) · 12 KB

README.md

File metadata and controls

211 lines (162 loc) · 12 KB

Learning to Boost Resilience of Complex Networks via Neural Edge Rewiring

This repository is the official PyTorch implementation of "Learning to Boost Resilience of Complex Networks via Neural Edge Rewiring".

Shanchao Yang, Kaili Ma, Baoxiang Wang, Tianshu Yu, Hongyuan Zha, Learning to Boost Resilience of Complex Networks via Neural Edge Rewiring, Transactions on Machine Learning Research.

ResiNet policy_architecture

Installation

  • CUDA 11.+

  • Create Python environment (3.+), using anaconda is recommended:

    conda create -n my-resinet-env python=3.8
    conda activate my-resinet-env
    
  • Install Pytorch using anaconda

    conda install pytorch torchvision torchaudio cudatoolkit=11.1 -c pytorch -c nvidia
    

    or using Pip

    pip install torch==1.9.1+cu111 torchvision==0.10.1+cu111 torchaudio==0.9.1 -f https://download.pytorch.org/whl/torch_stable.html
    
  • Install networkx, tensorflow, tensorboardX, numpy, numba, dm-tree, gym, dgl, pyg

    pip install networkx==2.5
    pip install tensorflow-gpu==2.3.0
    pip install numpy==1.20.3
    pip install numba==0.52.0
    pip install gym==0.18.0
    pip install tabulate
    pip install dm-tree
    pip install lz4
    pip install opencv-python
    pip install tensorboardX
    pip install dgl-cu111 -f https://data.dgl.ai/wheels/repo.html
    pip install torch-scatter -f https://pytorch-geometric.com/whl/torch-1.9.0+cu111.html
    pip install torch-sparse -f https://pytorch-geometric.com/whl/torch-1.9.0+cu111.html
    pip install torch-cluster -f https://pytorch-geometric.com/whl/torch-1.9.0+cu111.html
    pip install torch-spline-conv -f https://pytorch-geometric.com/whl/torch-1.9.0+cu111.html
    pip install torch-geometric
    
  • Install ray

    • Use the specific commit version of ray 8a066474d44110f6fddd16618351fe6317dd7e03

      For Linux:

      pip install -U https://s3-us-west-2.amazonaws.com/ray-wheels/master/8a066474d44110f6fddd16618351fe6317dd7e03/ray-2.0.0.dev0-cp38-cp38-manylinux2014_x86_64.whl
      

      For Windows:

      pip install -U https://s3-us-west-2.amazonaws.com/ray-wheels/master/8a066474d44110f6fddd16618351fe6317dd7e03/ray-2.0.0.dev0-cp38-cp38-win_amd64.whl
      
    • Download our repository, which includes the source codes of ray and ResiNet.

      git clone https://github.com/yangysc/ResiNet.git
      
    • Set the symlink of rllib to use our custom rllib (remeber to remove these symlinks before uninstalling ray!)

      python ResiNet/ray-master/python/ray/setup-dev.py -y
      

Code description

There are 4 important file folders.

  • Environment: ResiNet/ray-master/rllib/examples/env/

    • graphenv.py is the edge rewiring environment based on OpenAI gym.

    • parametric_actions_graph.py is the env wrapper that accesses the graph from graphenv.py and returns the dict observation.

    • utils_.py defines the reward calculation strategy.

    • get_mask.py defines the action mask calculation for selecting the first edge and the second edge.

    • datasets is the folder for providing training and test datasets. The following table (Table 2, Page 17 in the paper) records the statistics of graphs used in the paper.

      Dataset Node Edge Action Space Size
      BA-15 15 54 5832
      BA-50 50 192 73728
      BA-100 100 392 307328
      EU 217 640 819200
      BA-10-30 () 10-30 112 25088
      BA-20-200 () 20-200 792 1254528
  • Model: ResiNet/ray-master/rllib/examples/models/

    • autoregressive_action_model.py is the network architecture of ResiNet.
    • gnnmodel.py defines the GIN model based on dgl.
  • Distribution: ResiNet/ray-master/rllib/examples/models/

    • autoregressive_action_dist.py is the action distribution module of ResiNet.
  • Loss: ResiNet/ray-master/rllib/agents/ppo/

    • ppo_torch_policy.py defines the DDPPO loss function.

Run

Platform

We tested the following experiments (see Command) with

  • GPU: GEFORCE RTX 3090 * 2 (24 G memory * 2 = 48G in total)
  • CPU: AMD 3990X

Adjust the corresponding hyperparameters according to your GPU hardware. Our code supports the multiple gpus training thanks to ray. The GPU memory capacity and the number of gpu are the main bottlenecks for DDPPO. The usage of more gpus means a faster training.

  • num-gpus: the number of GPU available in total (increase it if more gpus are available)
  • bs: batch size
  • mini-bs: minibatch size
  • tasks-per-gpu:the number of paralleled worker
  • gpus_per_instance: the number of GPU used for this train instance (ray can support tune multiple instances simultaneously) (increase it if more gpus are available)

Command

First go to the following folder.

cd ResiNet/ray-master/rllib/examples

Train

  • Transductive setting (dataset is in [example_15, example_50, example_100, EU])

    • Run the experiment on optimizing the BA-15 dataset with alpha=0, risilience metric R, node degree-based attack:

      CUDA_VISIBLE_DEVICES=0,1 python autoregressivegraph_decouple_action_dist_dppo.py --num-gpus=2 --cwd-path=./ --stop-iters=2000 --stop-timesteps=800000 --dataset=example_15 --tasks-per-gpu=2 --gpus_per_instance=2 --bs=4096 --mini-bs=256 --filtration_order=-1  --alpha=0 --robust-measure=R --reward_scale=10 --dual_clip_param=10 --lr=7e-4 --vf_lr=7e-4 --ppo_alg=dcppo --hidden_dim=64 --attack_strategy=degree --second-obj-func=ge --seed=0 
      
    • Optimize the BA-15 dataset with a grid search of the filtration order (set to -3):

      CUDA_VISIBLE_DEVICES=0,1 python autoregressivegraph_decouple_action_dist_dppo.py --num-gpus=2 --cwd-path=./ --stop-iters=2000 --stop-timesteps=800000 --dataset=example_15 --tasks-per-gpu=2 --gpus_per_instance=2 --bs=4096 --mini-bs=256 --filtration_order=-3  --alpha=0 --robust-measure=R --reward_scale=10 --dual_clip_param=10 --lr=7e-4 --vf_lr=7e-4 --ppo_alg=dcppo --hidden_dim=64 --attack_strategy=degree --second-obj-func=ge --seed=0 
      
    • Optimize the BA-15 dataset with a grid search of alpha (the coefficient of weighted sum of resilience and utility) (set to -1):

      CUDA_VISIBLE_DEVICES=0,1 python autoregressivegraph_decouple_action_dist_dppo.py --num-gpus=2 --cwd-path=./ --stop-iters=2000 --stop-timesteps=800000 --dataset=example_15 --tasks-per-gpu=2 --gpus_per_instance=2 --bs=4096 --mini-bs=256 --filtration_order=-1  --alpha=-1 --robust-measure=R --reward_scale=10 --dual_clip_param=10 --lr=7e-4 --vf_lr=7e-4 --ppo_alg=dcppo --hidden_dim=64 --attack_strategy=degree --second-obj-func=ge --seed=0
      
    • Optimize the BA-15 dataset with a grid search of robust-measure (resilience metric, choice is [R, sr, ac]) (set to -1):

      CUDA_VISIBLE_DEVICES=0,1 python autoregressivegraph_decouple_action_dist_dppo.py --num-gpus=2 --cwd-path=./ --stop-iters=2000 --stop-timesteps=800000 --dataset=example_15 --tasks-per-gpu=2 --gpus_per_instance=2 --bs=4096 --mini-bs=256 --filtration_order=-1  --alpha=0 --robust-measure=-1 --reward_scale=10 --dual_clip_param=10 --lr=7e-4 --vf_lr=7e-4 --ppo_alg=dcppo --hidden_dim=64 --attack_strategy=degree --second-obj-func=ge --seed=0 
      
    • Optimize the BA-15 dataset with a grid search of second-obj-func (utility metric, choice is [ge, le]) (set to -1):

      CUDA_VISIBLE_DEVICES=0,1 python autoregressivegraph_decouple_action_dist_dppo.py --num-gpus=2 --cwd-path=./ --stop-iters=2000 --stop-timesteps=800000 --dataset=example_15 --tasks-per-gpu=2 --gpus_per_instance=2 --bs=4096 --mini-bs=256 --filtration_order=-1  --alpha=0 --robust-measure=R --reward_scale=10 --dual_clip_param=10 --lr=7e-4 --vf_lr=7e-4 --ppo_alg=dcppo --hidden_dim=64 --attack_strategy=degree --second-obj-func=-1 --seed=-1 
      
    • Optimize the BA-15 dataset with a grid search of seed (set to -1):

      CUDA_VISIBLE_DEVICES=0,1 python autoregressivegraph_decouple_action_dist_dppo.py --num-gpus=2 --cwd-path=./ --stop-iters=2000 --stop-timesteps=800000 --dataset=example_15 --tasks-per-gpu=2 --gpus_per_instance=2 --bs=4096 --mini-bs=256 --filtration_order=-1  --alpha=0 --robust-measure=R --reward_scale=10 --dual_clip_param=10 --lr=7e-4 --vf_lr=7e-4 --ppo_alg=dcppo --hidden_dim=64 --attack_strategy=degree --second-obj-func=ge --seed=-1 
      
    • Optimize the EU dataset (increase bs and hidden_dim if more gpus are available. Four gpus would be better for hidden_dim=64):

      CUDA_VISIBLE_DEVICES=0,1 python autoregressivegraph_decouple_action_dist_dppo.py --num-gpus=2 --cwd-path=./ --stop-iters=2000 --stop-timesteps=800000 --dataset=EU --tasks-per-gpu=1 --gpus_per_instance=2 --bs=1024 --mini-bs=256 --filtration_order=1 --alpha=0 --robust-measure=R --reward_scale=10 --dual_clip_param=10 --lr=7e-4 --vf_lr=7e-4 --ppo_alg=dcppo --hidden_dim=32 --attack_strategy=degree --second-obj-func=ge --seed=0  
      
  • Inductive setting (dataset is in [ba_small_30, ba_mixed])

    • for the ba_small_30 dataset (use full filtration)

      CUDA_VISIBLE_DEVICES=0,1 python autoregressivegraph_decouple_action_dist_dppo.py --num-gpus=2 --cwd-path=./ --stop-iters=2000 --stop-timesteps=800000 --dataset=ba_small_30 --tasks-per-gpu=1 --gpus_per_instance=2 --bs=2048 --mini-bs=256 --filtration_order=-1  --alpha=0 --robust-measure=R --reward_scale=10 --dual_clip_param=10 --lr=7e-4 --vf_lr=7e-4 --ppo_alg=dcppo --hidden_dim=64 --attack_strategy=degree --second-obj-func=ge --seed=0 
      
    • for the ba_mixed dataset (set filtratio_order to 1, tasks-per-gpu to 1 and bs to 2048)

      CUDA_VISIBLE_DEVICES=0,1 python autoregressivegraph_decouple_action_dist_dppo.py --num-gpus=2 --cwd-path=./ --stop-iters=2000 --stop-timesteps=800000 --dataset=ba_mixed --tasks-per-gpu=1 --gpus_per_instance=2 --bs=2048 --mini-bs=256 --filtration_order=1  --alpha=0 --robust-measure=R --reward_scale=10 --dual_clip_param=10 --lr=7e-4 --vf_lr=7e-4 --ppo_alg=dcppo --hidden_dim=64 --attack_strategy=degree --second-obj-func=ge --seed=0
      

We highly recommend using tensorboard to monitor the training process. To do this, you may run

tensorboard --logdir log/DDPPO

Set checkpoint_freq to be non-zero (zero by default) if you want to save the trained models during the training process. And the final trained model will be saved by default when the training is done. All trained models and tensorboard logs are saved in the folder log/DDPPO/.

Test

  • BA-15 (dataset is in [example_15, example_50, example_100, EU, ba_small_30, ba_mixed]) (The problem setting related hyperparameters need to be consistent with the values used in training.)
    CUDA_VISIBLE_DEVICES=0,1 python evaluate_trained_agent_dppo.py --num-gpus=2 --tasks-per-gpu=1 --bs=400 --mini-bs=16 --gpus_per_instance=1 --ppo_alg=dcppo --attack_strategy=degree --second-obj-func=le --seed=0 --reward_scale=1 --test_num=-1 --cwd-path=./test  --alpha=0.5 --dataset=example_15 --filtration_order=-1  --robust-measure=ac --hidden_dim=64
    
    Remember to set the restore_path in evaluate_trained_agent_dppo.py (Line 26) to the trained model folder.

Citation

If you find this work useful, please cite our paper:

@article{
yang2023learning,
title={Learning to Boost Resilience of Complex Networks via Neural Edge Rewiring},
author={Shanchao Yang and Kaili Ma and Baoxiang Wang and Tianshu Yu and Hongyuan Zha},
journal={Transactions on Machine Learning Research},
issn={2835-8856},
year={2023},
url={https://openreview.net/forum?id=moZvOx5cxe}
}