Skip to content

Latest commit

 

History

History
49 lines (38 loc) · 1.45 KB

README.md

File metadata and controls

49 lines (38 loc) · 1.45 KB

Spark Typeclass

Cats typeclass instances for Apache Spark

Currently only contains algebraic (Semigroup / Monoid) and order typeclass instances for Column DataFrame and Dataset. For RDD typeclass instances, you may wish refer to Frameless. (We could include them in this project in the future as well.)

This project has been compile with Spark 2.4.0 but it should compatible with any Spark 2.x on Scala 2.11.x or 2.12.x.

SBT Setup

libraryDependencies += "io.github.yangzai" %% "spark-typeclass" % "0.1.0"

Example

import cats.data.NonEmptyList
import cats.Foldable
import cats.implicits._
import org.apache.spark.sql._

//import implicit instances to scope
import org.apache.spark.typeclass.instances._

case class StringRecord(value: String)
case class IntRecord(value: Int)

object Main {
  def main(args: Array[String]): Unit = {
    implicit val spark: SparkSession = SparkSession.builder
      .master("local[*]")
      .getOrCreate

    import spark.implicits._

    val ds1 = Seq(StringRecord("a")).toDS
    val ds2 = Seq(StringRecord("b")).toDS
    val df = Seq(IntRecord(1)).toDF

    //Combine examples
    ds1 |+| ds2 show()
    ds1.toDF |+| ds2.toDF |+| df show()

    //Reducible and Foldable examples
    NonEmptyList.of(ds1.toDF, ds2.toDF, df).reduce.show //only requires Semigroup instance
    Foldable[List] fold List(ds1, ds2) show() //requires Monoid instance
  }
}