-
Notifications
You must be signed in to change notification settings - Fork 0
/
LYG8DWithDoubleQuickSort4D.java
56 lines (54 loc) · 2.31 KB
/
LYG8DWithDoubleQuickSort4D.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
package org.tinos.deta.statistic;
//基于算法导论快排4衍生极速小高峰缺陷过滤理论快速排序第8代完美版本 线性数字数组排序法函数Java完整版本实现。
//思想:算法导论快排4理论,罗瑶光小高峰过滤理论,优化 催化波动算子duplication 思想, 减少条件递规深度思想。流水阀门优化思想.
//实现:罗瑶光
//时间:20140101~ 20200704
public class LYG8DWithDoubleQuickSort4D{
int range;
int deeps;
public double[] sort(double[] array, int range, int deeps) {
this.range= range;
this.deeps= deeps;
processDouble(array, 0, array.length- 1, 0);
return array;
}
private void processDouble(double[] array, int leftPoint, int rightPoint, int deep) {
int c= rightPoint- leftPoint;
if(!(c< this.range|| deep> this.deeps)) {//balance催化减少条件递规深度思想。//流水阀门优化思想。
int pos= partition(array, leftPoint, rightPoint);
if(leftPoint< pos- 1){
processDouble(array, leftPoint, pos- 1, deep+ 1);//减少条件递规深度思想。
}
if(pos+ 1< rightPoint){
processDouble(array, pos+ 1, rightPoint, deep+ 1);//减少条件递规深度思想。
}
return;
}
int i= leftPoint;
for(int j= i+ 1; j<= leftPoint+ c; j= i++){
while(j> leftPoint){
if(array[j]< array[--j]){//催化波动算子duplication 思想
double temp= array[j+ 1];
array[j+ 1]= array[j];
array[j]= temp;
}
}
}
}
private int partition(double[] array, int leftPoint, int rightPoint) {
double x= array[leftPoint]< array[rightPoint]? array[leftPoint]: array[rightPoint];//小高峰过滤饱和催化减少条件递规深度思想。
int leftPointReflection= leftPoint;
while(leftPointReflection< rightPoint){
while(!(array[leftPointReflection++]> x|| leftPointReflection> rightPoint)) {}//催化波动算子duplication 思想
while(array[rightPoint--]> x){}//催化波动算子duplication 思想
if(--leftPointReflection< ++rightPoint){//催化波动算子duplication 思想
double temp= array[rightPoint];
array[rightPoint]= array[leftPointReflection];
array[leftPointReflection]= temp;
}
}
array[leftPoint]= array[rightPoint];
array[rightPoint]= x;//小高峰过滤饱和催化减少条件递规深度思想。
return rightPoint;
}
}