-
Notifications
You must be signed in to change notification settings - Fork 1
/
25_Print_shortestCommonSubsequence.cpp
55 lines (53 loc) · 1.79 KB
/
25_Print_shortestCommonSubsequence.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
// Question Link :- https://leetcode.com/problems/shortest-common-supersequence/
// Shortest Common Supersequence
// T.C = O(n*m)
// S.C = O(n*m)
class Solution {
public:
string shortestCommonSupersequence(string X, string Y) {
int n = X.length(), m = Y.length();
int dp[n + 1][m + 1];
for (int i = 0; i <= n; i++) {
for (int j = 0; j <= m; j++) {
if (i == 0 || j == 0) {
dp[i][j] = 0;
}
}
}
for (int i = 1; i <= n; i++) {
for (int j = 1; j <= m; j++) {
if (X[i - 1] == Y[j - 1]) { // when last character is same
dp[i][j] = 1 + dp[i - 1][j - 1];
} else { // when last character is not same -> pick max
dp[i][j] = max(dp[i][j - 1], dp[i - 1][j]);
}
}
}
int i = n, j = m;
string scs = "";
while (i > 0 && j > 0) {
if (X[i - 1] == Y[j - 1]) { // when char are eqaul from table obs
scs += X[i - 1]; // take only once
i--, j--; // and decrement both
}
else if (dp[i][j - 1] > dp[i - 1][j]) {
scs += Y[j - 1]; // in this we will take the character to string
j--;
}
else {
scs += X[i - 1]; // taking the character to string
i--;
}
}
while (i > 0) {
scs += X[i - 1]; // take left character from X
i--;
}
while (j > 0) {
scs += Y[j - 1]; // take left character from Y
j--;
}
reverse(scs.begin(), scs.end());
return scs;
}
};