forked from flowersteam/Grounding_LLMs_with_online_RL
-
Notifications
You must be signed in to change notification settings - Fork 0
/
train_symbolic_ppo.py
executable file
·479 lines (421 loc) · 23.5 KB
/
train_symbolic_ppo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
#!/usr/bin/env python3
"""
This file is a modified version of the training script provided by BabyAI
"""
import os
import logging
import csv
import json
import gym
import time
import datetime
import torch
import babyai_text
import babyai.utils as utils
from babyai.arguments import ArgumentParser
from babyai.model import ACModel
from babyai.utils.agent import ModelAgent
from gym_minigrid.wrappers import FullyObsImgDirWrapper, FullyObsImgEgoWrapper
from babyai.shaped_env import ParallelShapedEnv
from gym import spaces
# from babyai. instruction_handler import InstructionHandler
# from subtask_prediction import SubtaskPrediction, SubtaskDataset
from colorama import Fore, Back, Style
from experiments.agents.ppo.symbolic_ppo_agent import SymbolicPPOAgent
if __name__ == "__main__":
# Parse arguments
parser = ArgumentParser()
parser.add_argument("--algo", default='ppo',
help="algorithm to use (default: ppo)")
parser.add_argument("--discount", type=float, default=0.99,
help="discount factor (default: 0.99)")
parser.add_argument("--reward-scale", type=float, default=20.,
help="Reward scale multiplier")
parser.add_argument("--gae-lambda", type=float, default=0.99,
help="lambda coefficient in GAE formula (default: 0.99, 1 means no gae)")
parser.add_argument("--value-loss-coef", type=float, default=0.5,
help="value loss term coefficient (default: 0.5)")
parser.add_argument("--max-grad-norm", type=float, default=0.5,
help="maximum norm of gradient (default: 0.5)")
parser.add_argument("--clip-eps", type=float, default=0.2,
help="clipping epsilon for PPO (default: 0.2)")
parser.add_argument("--ppo-epochs", type=int, default=4,
help="number of epochs for PPO (default: 4)")
parser.add_argument("--save-interval", type=int, default=50,
help="number of updates between two saves (default: 50, 0 means no saving)")
parser.add_argument("--full-obs", action="store_true", default=False,
help="use full observations of the environment")
parser.add_argument("--ego", action="store_true", default=False,
help="use egocentric full observations")
parser.add_argument("--pi-l", default=None,
help="model to use for low-level policy")
parser.add_argument("--hrl", default=None,
help="either 'vanilla', 'shape', or a hierarchical rl type (deprecated)")
parser.add_argument("--N", type=int, default=1,
help="hierarchical timestep")
parser.add_argument("--T", type=int, default=0,
help="number of steps per instruction in HRL (0 means to termination)")
parser.add_argument("--demos", default=None,
help="demos filename (REQUIRED or demos-origin or multi-demos required)")
parser.add_argument("--demos-origin", required=False,
help="origin of the demonstrations: human | agent (REQUIRED or demos or multi-demos required)")
parser.add_argument("--episodes", type=int, default=0,
help="number of episodes of demonstrations to use"
"(default: 0, meaning all demos)")
parser.add_argument("--multi-demos", nargs='*', default=None,
help="demos filenames for envs to train on (REQUIRED when multi-env is specified)")
parser.add_argument("--multi-episodes", type=int, nargs='*', default=None,
help="number of episodes of demos to use from each file (REQUIRED when multi-env is specified)")
parser.add_argument("--sampling-temperature", type=float, default=1,
help="softmax temperature to use when sampling from action distribution")
parser.add_argument("--oracle-rate", type=float, default=1,
help="rate at which hierarchical oracle option is non-null")
parser.add_argument("--reward-shaping", type=str, default="multiply",
help="apply reward shaping")
parser.add_argument("--pi-l-scale", type=float, default=1.,
help="Reshaped pi-l multiplier")
parser.add_argument("--pi-l-scale-2", type=float, default=1.,
help="Another reshaped pi-l multiplier (e.g. for penalties)")
parser.add_argument("--high-level-demos", default=None,
help="demos filename")
parser.add_argument("--hl-episodes", type=int, default=0,
help="number of high-level episodes of demonstrations to use"
"(default: 0, meaning all demos)")
parser.add_argument("--subtask-model", default=None,
help="model to use for subtask prediction")
parser.add_argument("--subtask-arch", default=None,
help="architecture of subtask model")
parser.add_argument("--subtask-pretrained-model", default=None,
help="pretrained subtask model")
parser.add_argument("--subtask-hl-demos", default=None,
help="demos for online subtask training (only validation used)")
parser.add_argument("--subtask-val-episodes", type=int, default=None,
help="number of validation demos to use for the subtask model")
parser.add_argument("--subtask-batch-size", type=int, default=None,
help="batch size for subtask model")
parser.add_argument("--subtask-update-rate", type=int, default=None,
help="rate at which subtask predictor is updated")
parser.add_argument("--subtask-updates", type=int, default=None,
help="number of gradient steps")
parser.add_argument("--subtask-discount", type=float, default=1.,
help="discount (un)applied when removing subtask bonuses")
parser.add_argument("--done-classifier", action="store_true", default=False,
help="whether pi_l is actually a binary termination classifier")
parser.add_argument("--number-actions", type=int, default=None,
help="nbr actions can be done more than 7, if more than 7 all additional actions are the action done in order to study the effect of useless actions")
parser.add_argument("--learn-baseline", default=None,
help="model to use for LEARN baseline classifier")
parser.add_argument("--debug", action="store_true", default=False,
help="whether to run RL in debug mode")
args = parser.parse_args()
utils.seed(args.seed)
# Generate environments
envs = []
for i in range(args.procs):
env = gym.make(args.env)
env.seed(100 * args.seed + i)
if args.full_obs:
if args.ego:
env = FullyObsImgEgoWrapper(env)
else:
env = FullyObsImgDirWrapper(env)
envs.append(env)
# Define model name
suffix = datetime.datetime.now().strftime("%y-%m-%d-%H-%M-%S")
instr = args.instr_arch if args.instr_arch else "noinstr"
mem = "mem" if not args.no_mem else "nomem"
model_name_parts = {
'env': args.env,
'algo': args.algo,
'arch': args.arch,
'instr': instr,
'mem': mem,
'seed': args.seed,
'info': '',
'coef': '',
'suffix': suffix}
default_model_name = "{env}_{algo}_{arch}_{instr}_{mem}_seed{seed}{info}{coef}_{suffix}".format(**model_name_parts)
if args.pretrained_model:
default_model_name = args.pretrained_model + '_pretrained_' + default_model_name
elif args.hrl:
if args.pi_l is not None:
default_model_name = args.pi_l + '_pi_l_' + default_model_name
args.model = args.model.format(**model_name_parts) if args.model else default_model_name
utils.configure_logging(args.model)
logger = logging.getLogger(__name__)
# Define logger and Tensorboard writer and CSV writer
header = (["update", "episodes", "frames", "FPS", "duration"]
+ ["return_" + stat for stat in ['mean', 'std', 'min', 'max']]
+ ["success_rate"]
+ ["reshaped_return_" + stat for stat in ['mean', 'std', 'min', 'max']]
+ ["reshaped_return_bonus_" + stat for stat in ['mean', 'std', 'min', 'max']]
+ ["num_frames_" + stat for stat in ['mean', 'std', 'min', 'max']]
+ ["entropy", "value", "policy_loss", "value_loss", "loss", "grad_norm"])
writer = None
if args.tb:
from tensorboardX import SummaryWriter
writer = SummaryWriter(utils.get_log_dir(args.model))
if args.wb:
import wandb
wandb.init(project="ella", name=args.model)
wandb.config.update(args)
writer = wandb
csv_path = os.path.join(utils.get_log_dir(args.model), 'log.csv')
first_created = not os.path.exists(csv_path)
# we don't buffer data going in the csv log, cause we assume
# that one update will take much longer that one write to the log
csv_writer = csv.writer(open(csv_path, 'a', 1))
if first_created:
csv_writer.writerow(header)
# Define obss preprocessor
if 'emb' in args.arch:
obss_preprocessor = utils.IntObssPreprocessor(args.model, envs[0].observation_space, args.pretrained_model)
elif args.full_obs and not args.ego:
obss_preprocessor = utils.ObssDirPreprocessor(args.model, envs[0].observation_space, args.pretrained_model)
elif 'cont' in args.arch:
obss_preprocessor = utils.ObssContPreprocessor(args.model, envs[0].observation_space, args.pretrained_model)
else:
obss_preprocessor = utils.ObssPreprocessor(args.model, envs[0].observation_space, args.pretrained_model)
pi_l_agent = None
instr_handler = None
# Load the instruction handler from demonstrations
if args.hrl is not None:
if getattr(args, 'multi_demos', None):
train_demos = []
for demos, episodes in zip(args.multi_demos, args.multi_episodes):
demos_path = utils.get_demos_path(demos, None, None, valid=False)
logger.info('loading {} of {} demos'.format(episodes, demos))
train_demos = utils.load_demos(demos_path)
logger.info('loaded demos')
if episodes > len(train_demos):
raise ValueError("there are only {} train demos in {}".format(len(train_demos), demos))
train_demos.extend(train_demos[:episodes])
logger.info('So far, {} demos loaded'.format(len(self.train_demos)))
logger.info('Loaded all demos')
elif getattr(args, 'demos', None):
demos_path = utils.get_demos_path(args.demos, None, args.demos_origin, valid=False)
demos_path_valid = utils.get_demos_path(args.demos, None, args.demos_origin, valid=True)
logger.info('loading demos')
train_demos = utils.load_demos(demos_path)
logger.info('loaded demos')
if args.episodes:
if args.episodes > len(train_demos):
raise ValueError("there are only {} train demos".format(len(train_demos)))
train_demos = train_demos[:args.episodes]
logger.info('loading instruction handler')
# if args.hrl != "vanilla":
# instr_handler = InstructionHandler(train_demos, load_bert="projection" in args.hrl, save_path=os.path.join(os.path.splitext(demos_path)[0], "ih"))
logger.info('loading instruction handler')
if getattr(args, 'high_level_demos', None):
hl_demos_path = utils.get_demos_path(args.high_level_demos, args.env, args.demos_origin, valid=False)
logger.info('loading high-level demos')
hl_demos = utils.load_demos(hl_demos_path)
logger.info('loaded high-level demos')
if args.hl_episodes:
if args.hl_episodes > len(hl_demos):
raise ValueError("there are only {} high-level demos".format(len(hl_demos)))
hl_demos = hl_demos[:args.hl_episodes]
# Load low-level model (low-level policy or termination classifier)
if args.hrl is not None and args.hrl != "vanilla":
pi_l_agent = ModelAgent(args.pi_l, None, argmax=True)
logger.info("loaded pi_l models")
# Initialize datasets / models used for shaping
# if args.reward_shaping in ["subtask_classifier_static"]:
# subtask_model = utils.load_model(args.subtask_model)
# subtask_model_preproc = utils.InstructionOnlyPreprocessor(args.subtask_model, load_vocab_from=args.subtask_model)
# subtask_dataset = None
# elif args.reward_shaping in ["subtask_classifier_online", "subtask_classifier_online_unclipped"]:
# args.subtask_model = args.model + "_subtask"
# subtask_prediction = SubtaskPrediction(args, online_args=True)
# subtask_model = subtask_prediction.model
# subtask_model_preproc = subtask_prediction.instr_preprocessor
# subtask_dataset = SubtaskDataset()
# else:
subtask_model = None
subtask_model_preproc = None
subtask_dataset = None
learn_baseline_cls = None
learn_baseline_preproc = None
if args.reward_shaping in ['learn_baseline']:
learn_baseline_cls = utils.load_model(args.learn_baseline)
if torch.cuda.is_available():
learn_baseline_cls.cuda()
learn_baseline_preproc = utils.InstructionOnlyPreprocessor(args.learn_baseline, load_vocab_from=args.learn_baseline)
# Adjust action space if necessary
if args.hrl is not None:
if envs[0].action_space.__class__.__name__ == "Discrete":
if args.number_actions is None:
A = envs[0].action_space.n
else:
A = int(args.number_actions)
action_space = spaces.Discrete(A)
logger.info("setting hrl to {}; |A| = {}".format(args.hrl, action_space.n))
if args.done_classifier:
done_action = 1
else:
done_action = envs[0].actions.done
else:
A = envs[0].action_space.shape[0]
action_space = envs[0].action_space
done_action = 1
# Create vectorized environment
envs = ParallelShapedEnv(envs, pi_l=pi_l_agent, done_action=done_action,
instr_handler=instr_handler, reward_shaping=args.reward_shaping,
subtask_cls=subtask_model, subtask_cls_preproc=subtask_model_preproc,
subtask_online_ds=subtask_dataset, subtask_discount=args.subtask_discount,
learn_baseline_cls=learn_baseline_cls, learn_baseline_preproc=learn_baseline_preproc)
else:
action_space = envs[0].action_space
# Define actor-critic model
logger.info("loading ACModel")
acmodel = utils.load_model(args.model, raise_not_found=False)
if acmodel is None:
if args.pretrained_model:
acmodel = utils.load_model(args.pretrained_model, raise_not_found=True)
else:
acmodel = ACModel(obss_preprocessor.obs_space, action_space,
args.image_dim, args.memory_dim, args.instr_dim,
not args.no_instr, args.instr_arch, not args.no_mem, args.arch)
logger.info("loaded ACModel")
obss_preprocessor.vocab.save()
utils.save_model(acmodel, args.model, writer)
if torch.cuda.is_available():
acmodel.cuda()
# Set reward shaping function
def bonus_penalty(_0, _1, reward, _2, info):
if info[0] > 0:
return [args.reward_scale * reward + args.pi_l_scale * max(info[0], 1), args.pi_l_scale * max(info[0], 1)]
elif info[1] > 0:
return [args.reward_scale * reward - args.pi_l_scale_2 * max(info[1], 1), -args.pi_l_scale_2 * max(info[1], 1)]
else:
return [args.reward_scale * reward, 0]
if args.reward_shaping == "multiply":
reshape_reward = lambda _0, _1, reward, _2, _3: [args.reward_scale * reward, 0]
def subtask_shaping(_0, _1, reward, _2, info):
if reward > 0:
return [args.reward_scale * reward + args.pi_l_scale * info[0] - args.pi_l_scale * info[1],
args.pi_l_scale * info[0] - args.pi_l_scale * info[1]]
else:
return [args.pi_l_scale * info[0],
args.pi_l_scale * info[0]]
def learn_baseline_shaping(_0, _1, reward, _2, info):
return [args.reward_scale * reward + args.pi_l_scale * (args.subtask_discount * info[1] - info[0]),
args.subtask_discount * info[1] - info[0]]
if args.reward_shaping in ["subtask_oracle_ordered",
"subtask_classifier_static",
"subtask_classifier_online",
"subtask_classifier_static_unclipped",
"subtask_classifier_online_unclipped"]:
reshape_reward = subtask_shaping
elif args.reward_shaping in ["learn_baseline"]:
reshape_reward = learn_baseline_shaping
# Define actor-critic algorithm
if args.algo == "ppo":
algo = SymbolicPPOAgent(envs, acmodel, args.frames_per_proc, args.discount, args.lr, args.beta1, args.beta2,
args.gae_lambda,
args.entropy_coef, args.value_loss_coef, args.max_grad_norm, args.recurrence,
args.optim_eps, args.clip_eps, args.ppo_epochs, args.batch_size, obss_preprocessor,
reshape_reward, use_penv=False, sampling_temperature=args.sampling_temperature,
debug=args.debug)
else:
raise ValueError("Incorrect algorithm name: {}".format(args.algo))
# When using extra binary information, more tensors (model params) are initialized compared to when we don't use that.
# Thus, there starts to be a difference in the random state. If we want to avoid it, in order to make sure that
# the results of supervised-loss-coef=0. and extra-binary-info=0 match, we need to reseed here.
utils.seed(args.seed)
# Restore training status
status_path = os.path.join(utils.get_log_dir(args.model), 'status.json')
if os.path.exists(status_path):
with open(status_path, 'r') as src:
status = json.load(src)
else:
status = {'i': 0,
'num_episodes': 0,
'num_frames': 0}
logger.info('COMMAND LINE ARGS:')
logger.info(args)
logger.info("CUDA available: {}".format(torch.cuda.is_available()))
# Train model
total_start_time = time.time()
best_success_rate = 0
best_mean_return = 0
test_env_name = args.env
logger.info("starting training")
while status['num_frames'] < args.frames:
# Update parameters
update_start_time = time.time()
logs = algo.update_parameters()
update_end_time = time.time()
status['num_frames'] += logs["num_frames"]
status['num_episodes'] += logs['episodes_done']
status['i'] += 1
# Print logs
if status['i'] % args.log_interval == 0:
total_ellapsed_time = int(time.time() - total_start_time)
fps = logs["num_frames"] / (update_end_time - update_start_time)
duration = datetime.timedelta(seconds=total_ellapsed_time)
return_per_episode = utils.synthesize(logs["return_per_episode"])
success_per_episode = utils.synthesize(
[1 if r > 0 else 0 for r in logs["return_per_episode"]])
reshaped_return_per_episode = utils.synthesize(logs["reshaped_return_per_episode"])
reshaped_return_bonus_per_episode = utils.synthesize(logs["reshaped_return_bonus_per_episode"])
num_frames_per_episode = utils.synthesize(logs["num_frames_per_episode"])
data = [status['i'], status['num_episodes'], status['num_frames'],
fps, total_ellapsed_time,
*return_per_episode.values(),
success_per_episode['mean'],
*reshaped_return_per_episode.values(),
*reshaped_return_bonus_per_episode.values(),
*num_frames_per_episode.values(),
logs["entropy"], logs["value"], logs["policy_loss"], logs["value_loss"],
logs["loss"], logs["grad_norm"]]
format_str = ("\nUpdate: {} | Episodes Done: {} | Frames Seen: {:06} | FPS: {:04.0f} | Ellapsed: {}\
\nReward: {: .2f} +- {: .2f} (Min: {: .2f} Max: {: .2f}) | Success Rate: {: .2f}\
\nReshaped: {: .2f} +- {: .2f} (Min: {: .2f} Max: {: .2f}) | Bonus: {: .2f} +- {: .2f} (Min: {: .2f} Max: {: .2f})\
\nFrames/Eps: {:.1f} +- {:.1f} (Min: {}, Max {})\
\nEntropy: {: .3f} | Value: {: .3f} | Policy Loss: {: .3f} | Value Loss: {: .3f} | Loss: {: .3f} | Grad Norm: {: .3f}")
logger.info(Fore.YELLOW + format_str.format(*data) + Fore.RESET)
if args.tb:
assert len(header) == len(data)
for key, value in zip(header, data):
writer.add_scalar(key, float(value), status['num_frames'])
if args.wb:
writer.log({key: float(value) for key, value in zip(header, data)},\
step=status['num_frames'])
csv_writer.writerow(data)
# if args.reward_shaping in ["subtask_classifier_online", "subtask_classifier_online_unclipped"] and \
# status['i'] % args.subtask_update_rate == 0:
# s_header = ['subtask_' + item for item in \
# ["update", "frames", "fps", "duration", "train_loss", "train_accuracy", "train_precision", "train_recall"]
# + ["validation_loss", "validation_accuracy"]
# + ["ground_truth_validation_accuracy", "ground_truth_validation_precision", "ground_truth_validation_recall"]]
# subtask_log = subtask_prediction.online_update(subtask_dataset.get_demos(), s_header, writer)
# if args.wb:
# writer.log(subtask_log, step=status['num_frames'])
# s_stats = subtask_dataset.get_stats()
# s_header = ["subtask_dataset_" + item for item in ["len", "mean", "std", "min", "max"]]
# if s_stats:
# writer.log({key: val for key, val in zip(s_header, s_stats)})
# text = [[str(subtask_dataset.denoised_demos)]]
# wandb.log({"subtask_dataset": wandb.Table(data=text, columns=["Contents"])})
# Save obss preprocessor vocabulary and model
if args.save_interval > 0 and status['i'] % args.save_interval == 0:
obss_preprocessor.vocab.save()
with open(status_path, 'w') as dst:
json.dump(status, dst)
utils.save_model(acmodel, args.model, writer)
save_model = False
mean_return = return_per_episode["mean"]
success_rate = success_per_episode["mean"]
if success_rate > best_success_rate:
best_success_rate = success_rate
save_model = True
elif (success_rate == best_success_rate) and (mean_return > best_mean_return):
best_mean_return = mean_return
save_model = True
if save_model:
utils.save_model(acmodel, args.model + '_best', writer)
obss_preprocessor.vocab.save(utils.get_vocab_path(args.model + '_best'))
logger.info("Return {: .2f}; best model is saved".format(mean_return))
else:
logger.info("Return {: .2f}; not the best model; not saved".format(mean_return))