-
Notifications
You must be signed in to change notification settings - Fork 60
/
main.cc
169 lines (137 loc) · 5.96 KB
/
main.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
#include "codelibrary/base/log.h"
#include "codelibrary/geometry/io/xyz_io.h"
#include "codelibrary/geometry/point_cloud/pca_estimate_normals.h"
#include "codelibrary/geometry/point_cloud/supervoxel_segmentation.h"
#include "codelibrary/geometry/util/distance_3d.h"
#include "codelibrary/util/tree/kd_tree.h"
#include "vccs_knn_supervoxel.h"
#include "vccs_supervoxel.h"
/// Point with Normal.
struct PointWithNormal : cl::RPoint3D {
PointWithNormal() {}
cl::RVector3D normal;
};
/**
* Metric used in VCCS supervoxel segmentation.
*
* Reference:
* Rusu, R.B., Cousins, S., 2011. 3d is here: Point cloud library (pcl),
* IEEE International Conference on Robotics and Automation, pp. 1–4.
*/
class VCCSMetric {
public:
explicit VCCSMetric(double resolution)
: resolution_(resolution) {}
double operator() (const PointWithNormal& p1,
const PointWithNormal& p2) const {
return 1.0 - std::fabs(p1.normal * p2.normal) +
cl::geometry::Distance(p1, p2) / resolution_ * 0.4;
}
private:
double resolution_;
};
/**
* Save point clouds (with segmentation colors) into the file.
*/
void WritePoints(const char* filename,
int n_supervoxels,
const cl::Array<cl::RPoint3D>& points,
const cl::Array<int>& labels) {
cl::Array<cl::RGB32Color> colors(points.size());
std::mt19937 random;
cl::Array<cl::RGB32Color> supervoxel_colors(n_supervoxels);
for (int i = 0; i < n_supervoxels; ++i) {
supervoxel_colors[i] = cl::RGB32Color(random());
}
for (int i = 0; i < points.size(); ++i) {
colors[i] = supervoxel_colors[labels[i]];
}
if (cl::geometry::io::WriteXYZPoints(filename, points, colors)) {
LOG(INFO) << "The points are written into " << filename;
}
// system(filename);
}
int main() {
LOG_ON(INFO);
const std::string filename = "test.xyz";
cl::Array<cl::RPoint3D> points;
cl::Array<cl::RGB32Color> colors;
LOG(INFO) << "Reading points from " << filename << "...";
if (!cl::geometry::io::ReadXYZPoints(filename.c_str(), &points, &colors)) {
LOG(INFO) << "Please check if " << filename << " is exist.";
return 0;
}
int n_points = points.size();
LOG(INFO) << n_points << " points are imported.";
LOG(INFO) << "Building KD tree...";
cl::KDTree<cl::RPoint3D> kdtree;
kdtree.SwapPoints(&points);
const int k_neighbors = 15;
assert(k_neighbors < n_points);
LOG(INFO) << "Compute the k-nearest neighbors for each point, and "
"estimate the normal vectors...";
cl::Array<cl::RVector3D> normals(n_points);
cl::Array<cl::Array<int> > neighbors(n_points);
cl::Array<cl::RPoint3D> neighbor_points(k_neighbors);
for (int i = 0; i < n_points; ++i) {
kdtree.FindKNearestNeighbors(kdtree.points()[i], k_neighbors,
&neighbors[i]);
for (int k = 0; k < k_neighbors; ++k) {
neighbor_points[k] = kdtree.points()[neighbors[i][k]];
}
cl::geometry::point_cloud::PCAEstimateNormal(neighbor_points.begin(),
neighbor_points.end(),
&normals[i]);
}
kdtree.SwapPoints(&points);
LOG(INFO) << "Start supervoxel segmentation...";
cl::Array<PointWithNormal> oriented_points(n_points);
for (int i = 0; i < n_points; ++i) {
oriented_points[i].x = points[i].x;
oriented_points[i].y = points[i].y;
oriented_points[i].z = points[i].z;
oriented_points[i].normal = normals[i];
}
// NOTE!!! Change the resolution to get variable sized supervoxels.
const double resolution = 1.0;
VCCSMetric metric(resolution);
cl::Array<int> labels, supervoxels;
cl::geometry::point_cloud::SupervoxelSegmentation(oriented_points,
neighbors,
resolution,
metric,
&supervoxels,
&labels);
int n_supervoxels = supervoxels.size();
LOG(INFO) << n_supervoxels << " supervoxels computed.";
WritePoints("out.xyz", n_supervoxels, points, labels);
//-------------------------------------------------------------------------
//-------------------------------------------------------------------------
//-------------------------------------------------------------------------
LOG(INFO) << "Start VCCS supervoxel segmentation...";
// Note that, you may need to change the resolution of voxel.
const double voxel_resolution = 0.03;
VCCSSupervoxel vccs(points.begin(), points.end(),
voxel_resolution,
resolution);
cl::Array<int> vccs_labels;
cl::Array<VCCSSupervoxel::Supervoxel> vccs_supervoxels;
vccs.Segment(&vccs_labels, &vccs_supervoxels);
n_supervoxels = vccs_supervoxels.size();
LOG(INFO) << n_supervoxels << " supervoxels computed.";
WritePoints("out_vccs.xyz", n_supervoxels, points, vccs_labels);
//-------------------------------------------------------------------------
//-------------------------------------------------------------------------
//-------------------------------------------------------------------------
LOG(INFO) << "Start KNN variant of VCCS supervoxel segmentation...";
kdtree.SwapPoints(&points);
VCCSKNNSupervoxel vccs_knn(kdtree, resolution);
cl::Array<int> vccs_knn_labels;
cl::Array<VCCSKNNSupervoxel::Supervoxel> vccs_knn_supervoxels;
vccs_knn.Segment(&vccs_knn_labels, &vccs_knn_supervoxels);
kdtree.SwapPoints(&points);
n_supervoxels = vccs_knn_supervoxels.size();
LOG(INFO) << n_supervoxels << " supervoxels computed.";
WritePoints("out_vccs_knn.xyz", n_supervoxels, points, vccs_knn_labels);
return 0;
}