-
Notifications
You must be signed in to change notification settings - Fork 31
/
Copy patharg_parser.py
executable file
·78 lines (61 loc) · 4.23 KB
/
arg_parser.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
'''Train CIFAR10 with PyTorch.'''
from __future__ import print_function
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
import torch.backends.cudnn as cudnn
import torchvision
import torchvision.transforms as transforms
import os
import argparse
import time
from copy import deepcopy
import numpy as np
import distutils.util
def parse_args():
parser = argparse.ArgumentParser(description='PyTorch Training',
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('--msg', default=False, type=distutils.util.strtobool, help='display message')
parser.add_argument('--resume', default='', type=str, metavar='PATH',
help='path to latest checkpoint (default: none)')
parser.add_argument('--use-gpu', default=torch.cuda.is_available(), type=distutils.util.strtobool, help='Use GPU or not')
parser.add_argument('-j','--num-workers', default=16, type=int, help='num of fetching threads')
parser.add_argument('--result-path', default='./results', help='result path')
parser.add_argument('--checkpoint-path', default='./checkpoints', help='checkpoint path')
parser.add_argument('--checkpoint-epoch', default=-1, type=int, help='epochs to save checkpoint ')
parser.add_argument('--print-freq', default=20, type=int, help='print freq')
#important settings:
parser.add_argument('--seed', default=0, type=int, help='random seed')
parser.add_argument('--optimizer', default='SGD', help='optimizer(SGD|Adam|AMSGrad)')
parser.add_argument('--lr', default=1e-1, type=float, help='learning rate')
parser.add_argument('--lr-scheduler', default='cosine', help='learning rate scheduler(multistep|cosine)')
parser.add_argument('--momentum', default=0.9, type=float, metavar='M',
help='momentum')
parser.add_argument('--wd', '--weight-decay', default=1e-3, type=float,
metavar='W', help='weight decay (default: 5e-4)',
dest='weight_decay')
parser.add_argument('-b','--batch-size', default=128, type=int, help='batch size')
parser.add_argument('--epochs', default=20, type=int, help='training epochs')
parser.add_argument('--milestone', default=0.4, type=float, help='milestone in multistep scheduler')
parser.add_argument('--multistep-gamma', default=0.1, type=float, help='the gamma parameter in multistep|plateau scheduler')
parser.add_argument('-a','--arch', default='vgg11', help='architecture')
parser.add_argument('--dataset', default='cifar10', help='dataset(cifar10|cifar100|svhn|stl10|mnist)')
parser.add_argument('--init', default='kaiming_1', help='initialization method (casnet|xavier|kaiming_1||kaiming_2)')
parser.add_argument('--save-plot', default=True, type=distutils.util.strtobool, help='save plots with matplotlib')
parser.add_argument('--tensorboard', default=True, type=distutils.util.strtobool, help='use tensorboard')
parser.add_argument('--loss', default='CE', type=str, help='loss: CE/L2')
parser.add_argument('--method', default=3, type=int, help='method/model type')
parser.add_argument('--batchnorm', default=True, type=distutils.util.strtobool, help='turns on or off batch normalization')
# for deconv
parser.add_argument('--deconv', default=False, type=distutils.util.strtobool, help='use deconv')
parser.add_argument('--delinear', default=True, type=distutils.util.strtobool, help='use decorrelated linear')
parser.add_argument('--block-fc','--num-groups-final', default=0, type=int, help='number of groups in the fully connected layers')
parser.add_argument('--block', '--num-groups', default=64,type=int, help='block size in deconv')
parser.add_argument('--deconv-iter', default=5,type=int, help='number of iters in deconv')
parser.add_argument('--eps', default=1e-5,type=float, help='for regularization')
parser.add_argument('--bias', default=True,type=distutils.util.strtobool, help='use bias term in deconv')
parser.add_argument('--stride', default=3, type=int, help='sampling stride in deconv')
parser.add_argument('--freeze', default=False, type=distutils.util.strtobool, help='freeze the deconv updates')
args = parser.parse_args()
return args