forked from nicholaskajoh/ivy
-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathVehicleCounter.py
152 lines (123 loc) · 5.58 KB
/
VehicleCounter.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
import cv2
from vehicle_counting.trackers.tracker import create_blob, add_new_blobs, remove_duplicates
import numpy as np
from collections import OrderedDict
from .detectors.detector import get_bounding_boxes
import uuid
import os
import contextlib
from datetime import datetime
import argparse
from vehicle_counting.utils.detection_roi import get_roi_frame, draw_roi
from vehicle_counting.counter import get_counting_line, is_passed_counting_line
class VehicleCounter():
def __init__(self, detector='yolo', tracker='kcf', droi=None, show_droi = False, mctf=3, di=10, record=False, record_path='./videos/output.avi', log_file='log.txt', cl_position='bottom'):
self.detector = detector
self.tracker = tracker
self.droi = droi
self.show_droi = show_droi
self.mctf = mctf
self.detection_interval = di
self.record = record
self.record_destination = record_path
self.log_file_name = log_file
self.cl_position = cl_position
self.is_initialized = False
def initialize(self):
if(not self.droi):
self.frame_height, self.frame_width, _ = self.frame.shape
self.droi = [(0, 0), (self.frame_width, 0), (self.frame_width, self.frame_height), (0, self.frame_height)]
self.blobs = OrderedDict()
self.blob_id = 1
self.frame_counter = 0
self.vehicle_count = 0
self.counting_line = get_counting_line(self.cl_position, self.frame_width, self.frame_height)
def reset_counter():
self.frame = None
self.droi = None
self.is_initialized = False
def initialize_recording(self):
self.output_video = cv2.VideoWriter(self.record_destination, cv2.VideoWriter_fourcc('M','J','P','G'), 30, (self.frame_width, self.frame_height))
log_file_name = 'log.txt'
with contextlib.suppress(FileNotFoundError):
os.remove(log_file_name)
log_file = open(log_file_name, 'a')
log_file.write('vehicle_id, count, datetime\n')
log_file.flush()
def initialize_blobs(self):
droi_frame = get_roi_frame(self.frame, self.droi)
initial_bboxes = get_bounding_boxes(droi_frame, self.detector)
for box in initial_bboxes:
_blob = create_blob(box, frame, self.tracker)
self.blobs[self.blob_id] = _blob
self.blob_id += 1
def set_detector(self,detector):
self.detector = detector
def set_tracker(self, tracker):
self.tracker = tracker
def set_droi(self, droi):
self.droi = droi
def show_droi(self, flag):
self.show_droi = flag
def set_enable_log(self, flag):
self.set_enable_recording = flag
def set_record_destination(self,path_to_file):
self.record_destination = path_to_file
def set_cl_position(self, cl_position):
self.cl_position = cl_position
def count_vehicles(self, frame):
self.frame = frame
if(not self.is_initialized):
self.initialize()
self.is_initialized = True
self.initialize_recording
self.initialize_blobs
for _id, blob in list(self.blobs.items()):
# update trackers
success, box = blob.tracker.update(self.frame)
if success:
blob.num_consecutive_tracking_failures = 0
blob.update(box)
else:
blob.num_consecutive_tracking_failures += 1
# delete untracked blobs
if blob.num_consecutive_tracking_failures >= self.mctf:
del self.blobs[_id]
# count vehicles
if is_passed_counting_line(blob.centroid, self.counting_line, self.cl_position) and not blob.counted:
blob.counted = True
self.vehicle_count += 1
# log count data to a file (vehicle_id, count, datetime)
if self.record:
_row = '{0}, {1}, {2}\n'.format('v_' + str(_id), self.vehicle_count, datetime.now())
log_file.write(_row)
log_file.flush()
if self.frame_counter >= self.detection_interval:
# rerun detection
droi_frame = get_roi_frame(self.frame, self.droi)
boxes = get_bounding_boxes(droi_frame, self.detector)
self.blobs, current_blob_id = add_new_blobs(boxes, self.blobs, self.frame, self.tracker, self.blob_id, self.counting_line, self.cl_position)
self.blob_id = current_blob_id
self.blobs = remove_duplicates(self.blobs)
self.frame_counter = 0
# draw and label blob bounding boxes
for _id, blob in self.blobs.items():
(x, y, w, h) = [int(v) for v in blob.bounding_box]
cv2.rectangle(self.frame, (x, y), (x + w, y + h), (0, 255, 0), 2)
cv2.putText(self.frame, 'v_' + str(_id), (x, y - 2), cv2.FONT_HERSHEY_DUPLEX, 1, (0, 255, 0), 2, cv2.LINE_AA)
# draw counting line
cv2.line(self.frame, self.counting_line[0], self.counting_line[1], (0, 255, 0), 3)
# display vehicle count
cv2.putText(self.frame, 'Count: ' + str(self.vehicle_count), (20, 60), cv2.FONT_HERSHEY_DUPLEX, 2, (255, 0, 0), 2, cv2.LINE_AA)
# show detection roi
if self.show_droi:
self.frame = draw_roi(self.frame, self.droi)
# save frame in video output
if self.record:
self.output_video.write(self.frame)
# visualize vehicle counting
resized_frame = cv2.resize(self.frame, (858, 480))
self.frame_counter += 1
return resized_frame
if __name__ == '__main__':
pass