forked from rycolab/probing-via-prompting
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_pp.py
629 lines (557 loc) · 22.7 KB
/
run_pp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
#!/usr/bin/env python
# coding=utf-8
# Copyright 2020 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Fine-tuning the library models for causal language modeling (GPT, GPT-2, CTRL, ...) on a text file or a dataset.
Here is the full list of checkpoints on the hub that can be fine-tuned by this script:
https://huggingface.co/models?filter=causal-lm
"""
# You can also adapt this script on your own causal language modeling task. Pointers for this are left as comments.
import logging
import math
import os
import random
import sys
from dataclasses import asdict, dataclass, field
from typing import Optional
import datasets
import pandas as pd
import torch
import transformers
from datasets import load_dataset
from transformers import (AdamW, AutoConfig, AutoTokenizer, CONFIG_MAPPING, HfArgumentParser,
MODEL_FOR_CAUSAL_LM_MAPPING, TrainerCallback, TrainerControl, TrainerState, TrainingArguments,
default_data_collator,
set_seed)
from transformers.trainer_utils import get_last_checkpoint
from transformers.utils.versions import require_version
import wandb
from modeling_gated_gpt2 import GatedGPT2LMHeadModel
from modeling_gpt2_pp import GPT2ForProbingViaPrompting
from trainer_pp import PPTrainer
from utils import LABEL_DICT, convert_gate_to_mask, transform_dict
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
# check_min_version("4.13.0.dev0")
require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/language-modeling/requirements.txt")
logger = logging.getLogger(__name__)
MODEL_CONFIG_CLASSES = list(MODEL_FOR_CAUSAL_LM_MAPPING.keys())
MODEL_TYPES = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES)
MAX_LENGTH = {'pos': 360, 'const': 700, 'ner': 360, 'coref': 340, 'srl': 685}
@dataclass
class ModelArguments:
"""
Arguments pertaining to which model/config/tokenizer we are going to fine-tune, or train from scratch.
"""
gpt2_name_or_path: Optional[str] = field(
default=None,
metadata={
"help": "The model checkpoint for weights initialization."
"Don't set if you want to train a model from scratch."
},
)
prefix_model_path: Optional[str] = field(
default=None,
metadata={
"help": "Path to trained prefix model."
"Don't set if you want to train a model from scratch."
},
)
model_type: Optional[str] = field(
default=None,
metadata={"help": "If training from scratch, pass a model type from the list: " + ", ".join(MODEL_TYPES)},
)
config_overrides: Optional[str] = field(
default=None,
metadata={
"help": "Override some existing default config settings when a model is trained from scratch. Example: "
"n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index"
},
)
config_name: Optional[str] = field(
default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
)
tokenizer_name: Optional[str] = field(
default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}
)
cache_dir: Optional[str] = field(
default='cache/',
metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"},
)
use_fast_tokenizer: bool = field(
default=True,
metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."},
)
model_revision: str = field(
default="main",
metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."},
)
use_auth_token: bool = field(
default=False,
metadata={
"help": "Will use the token generated when running `transformers-cli login` (necessary to use this script "
"with private models)."
},
)
flat: Optional[bool] = field(
default=False,
metadata={
"help": "If True, train the prefix parameters directly. Otherwise, reparametrize using a bottleneck MLP."
},
)
prefix_len: Optional[int] = field(
default=200,
metadata={"help": "Length of the prefix."},
)
prefix_dim: Optional[int] = field(
default=512,
metadata={"help": "Dimension of hidden states of prefix model."},
)
prefix_drop: Optional[float] = field(
default=0.0,
metadata={"help": "Droput rate for the prefix model."},
)
num_of_heads: Optional[int] = field(
default=96,
metadata={"help": "Number of heads left unpruned."},
)
pruning_lr: Optional[float] = field(
default=0.1,
metadata={"help": "Learning rate for head importance variables."},
)
do_prune: Optional[bool] = field(
default=False,
metadata={"help": "Whether heads are pruned."},
)
head_mask_path: Optional[str] = field(
default='None',
metadata={
"help": "Where head mask is stored"
},
)
toggle_mask: Optional[bool] = field(
default=True,
metadata={"help": "Whether heads are pruned."},
)
randomized: bool = field(
default=False,
metadata={
"help": "If true, load the architecture of the model only, without pretrained weights. "
"By default (randomized=False), load the whole pretrained model."
},
)
dev: bool = field(
default=False,
metadata={
"help": "If true, use development dataset to do evaluation. Otherwise use test dataset."
},
)
mod_randomized: bool = field(
default=False,
metadata={
"help": "If true, load the architecture of the model only, without pretrained weights. "
"Artificially specify how to initialize the weights, e.g., init_mean, init_std, etc."
},
)
init_mean: float = field(
default=0.0,
metadata={
"help": "Randomized model weight initialization mean"
},
)
init_std: float = field(
default=0.02,
metadata={
"help": "Randomized model weight initialization std"
},
)
@dataclass
class DataTrainingArguments:
"""
Arguments pertaining to what data we are going to input our model for training and eval.
"""
data_dir: Optional[str] = field(
default=None, metadata={"help": "Where data is stored"}
)
task: Optional[str] = field(
default='ner',
metadata={"help": "Tasks, one or more of {pos, const, coref, ner, srl}."},
)
max_train_samples: Optional[int] = field(
default=None,
metadata={
"help": "For debugging purposes or quicker training, truncate the number of training examples to this "
"value if set."
},
)
max_eval_samples: Optional[int] = field(
default=None,
metadata={
"help": "For debugging purposes or quicker training, truncate the number of evaluation examples to this "
"value if set."
},
)
overwrite_cache: bool = field(
default=False, metadata={"help": "Overwrite the cached training and evaluation sets"}
)
preprocessing_num_workers: Optional[int] = field(
default=None,
metadata={"help": "The number of processes to use for the preprocessing."},
)
# Define a callback to save evaluation results in a csv file
eval_results_df = pd.DataFrame(columns=["epoch", "eval_accuracy", "eval_loss"])
SAVE_EPOCHS: int = 1
class SaveEvalResultsCallback(TrainerCallback):
def on_evaluate(self, args: TrainingArguments, state: TrainerState, control: TrainerControl, **kwargs):
global eval_results_df
metrics = kwargs.pop("metrics")
cur_epoch: int = int(state.epoch)
if state.is_world_process_zero:
eval_result = {
"epoch" : cur_epoch,
"eval_accuracy": metrics["eval_accuracy"],
"eval_loss" : metrics["eval_loss"]
}
eval_result_df = pd.DataFrame([eval_result])
eval_results_df = pd.concat([eval_results_df, eval_result_df])
eval_results_df.to_csv(os.path.join(args.output_dir, f"eval_results.csv"), index=False)
def main():
# See all possible arguments in src/transformers/training_args.py
# or by passing the --help flag to this script.
# We now keep distinct sets of args, for a cleaner separation of concerns.
parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))
if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
# If we pass only one argument to the script, and it's the path to a json file,
# let's parse it to get our arguments.
model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
else:
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
model_args: ModelArguments
data_args: DataTrainingArguments
training_args: TrainingArguments
# # Post-processing
# Pretrained or Randomized
if model_args.randomized or model_args.mod_randomized:
model_args.gpt2_name_or_path = None
model_args.config_name = "gpt2"
model_args.tokenizer_name = "gpt2"
# Determine the default experiment serial
serial = f"Epoch{int(training_args.num_train_epochs)}-LR{training_args.learning_rate}-"
if model_args.randomized:
serial += "Randomized-"
elif model_args.mod_randomized:
serial += "ModRand-"
else:
serial += "Pretrained-"
if model_args.dev:
serial += "Dev"
else:
serial += "Test"
if model_args.mod_randomized:
group_name = f"Mean{model_args.init_mean}-Std{model_args.init_std}"
else:
group_name = f"Epoch{int(training_args.num_train_epochs)}-LR{training_args.learning_rate}"
# WanDB setup
if model_args.mod_randomized:
wandb_proj_name = f"Probe-{data_args.task}-ModRand-Prefix-Len{model_args.prefix_len}"
elif model_args.flat:
wandb_proj_name = f"ConvergedProbe-{data_args.task}-PP-flat-Len{model_args.prefix_len}"
else:
wandb_proj_name = f"ConvergedProbe-{data_args.task}-PP-Len{model_args.prefix_len}"
os.environ["WANDB_PROJECT"] = wandb_proj_name
wandb.init(
project=wandb_proj_name,
name=serial,
# group=group_name,
)
training_args.report_to = ["wandb"]
training_args.logging_steps = 50
training_args.run_name = serial
wandb.log(transform_dict(asdict(model_args)))
wandb.log(transform_dict(asdict(data_args)))
# Setup logging
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
handlers=[logging.StreamHandler(sys.stdout)],
)
log_level = training_args.get_process_log_level()
logger.setLevel(log_level)
datasets.utils.logging.set_verbosity(log_level)
transformers.utils.logging.set_verbosity(log_level)
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
# Log on each process the small summary:
logger.warning(
f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
+ f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}"
)
logger.info(f"Training/evaluation parameters {training_args}")
# Detecting last checkpoint.
last_checkpoint = None
if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir:
last_checkpoint = get_last_checkpoint(training_args.output_dir)
if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
raise ValueError(
f"Output directory ({training_args.output_dir}) already exists and is not empty. "
"Use --overwrite_output_dir to overcome."
)
elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
logger.info(
f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
"the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
)
# Set seed before initializing model.
set_seed(training_args.seed)
# Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below)
# or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/
# (the dataset will be downloaded automatically from the datasets Hub).
#
# For CSV/JSON files, this script will use the column called 'text' or the first column if no column called
# 'text' is found. You can easily tweak this behavior (see below).
#
# In distributed training, the load_dataset function guarantee that only one local process can concurrently
# download the dataset.
data_files = {}
dataset_args = {}
logger.info("Loading data for {}".format(data_args.task))
if training_args.do_train:
data_files["train"] = os.path.join(data_args.data_dir, data_args.task, 'train.json')
if model_args.dev:
data_files["validation"] = os.path.join(data_args.data_dir, data_args.task, 'development.json')
else:
data_files["validation"] = os.path.join(data_args.data_dir, data_args.task, 'test.json')
raw_datasets = load_dataset("json", data_files=data_files, cache_dir=model_args.cache_dir, **dataset_args)
if "_control" in data_args.task:
data_args.task = data_args.task.replace("_control", "")
# See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
# https://huggingface.co/docs/datasets/loading_datasets.html.
# Load pretrained model and tokenizer
#
# Distributed training:
# The .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
config_kwargs = {
"cache_dir" : model_args.cache_dir,
"revision" : model_args.model_revision,
"use_auth_token": True if model_args.use_auth_token else None,
}
if model_args.config_name:
config = AutoConfig.from_pretrained(model_args.config_name, **config_kwargs)
elif model_args.gpt2_name_or_path:
config = AutoConfig.from_pretrained(model_args.gpt2_name_or_path, **config_kwargs)
else:
config = CONFIG_MAPPING[model_args.model_type]()
logger.warning("You are instantiating a new config instance from scratch.")
if model_args.config_overrides is not None:
logger.info(f"Overriding config: {model_args.config_overrides}")
config.update_from_string(model_args.config_overrides)
tokenizer_kwargs = {
"cache_dir" : model_args.cache_dir,
"use_fast" : model_args.use_fast_tokenizer,
"revision" : model_args.model_revision,
"use_auth_token": True if model_args.use_auth_token else None,
}
if model_args.tokenizer_name:
tokenizer = AutoTokenizer.from_pretrained(model_args.tokenizer_name, **tokenizer_kwargs)
elif model_args.gpt2_name_or_path:
tokenizer = AutoTokenizer.from_pretrained(model_args.gpt2_name_or_path, **tokenizer_kwargs)
else:
raise ValueError(
"You are instantiating a new tokenizer from scratch. This is not supported by this script."
"You can do it from another script, save it, and load it from here, using --tokenizer_name."
)
special_tokens_dict = {
'sep_token' : '<sep>',
'additional_special_tokens': list(LABEL_DICT[data_args.task].values())
}
num_added_toks = tokenizer.add_special_tokens(special_tokens_dict)
config.num_labels = num_added_toks - 1
if model_args.gpt2_name_or_path:
gpt2 = GatedGPT2LMHeadModel.from_pretrained(
model_args.gpt2_name_or_path,
from_tf=bool(".ckpt" in model_args.gpt2_name_or_path),
config=config,
cache_dir=model_args.cache_dir,
revision=model_args.model_revision,
use_auth_token=True if model_args.use_auth_token else None,
)
elif model_args.randomized:
config.mod_randomized = False
gpt2 = GatedGPT2LMHeadModel(config)
n_params = sum(dict((p.data_ptr(), p.numel()) for p in gpt2.parameters()).values())
logger.info(f"Training new gpt2 from scratch - Total size={n_params / 2 ** 20:.2f}M params")
elif model_args.mod_randomized:
config.mod_randomized = True
config.init_mean = model_args.init_mean
config.init_std = model_args.init_std
gpt2 = GatedGPT2LMHeadModel(config)
n_params = sum(dict((p.data_ptr(), p.numel()) for p in gpt2.parameters()).values())
logger.info(f"Training new gpt2 from scratch - Total size={n_params / 2 ** 20:.2f}M params")
logger.info(f"Modified weight initialization strategy, mean: {config.init_mean}, std:{config.init_std}")
gpt2.resize_token_embeddings(len(tokenizer))
gpt2.eval_acc = True
if model_args.prefix_model_path:
config = AutoConfig.from_pretrained(model_args.prefix_model_path, cache_dir=model_args.cache_dir)
model = GPT2ForProbingViaPrompting.from_pretrained(model_args.prefix_model_path, config=config, gpt2=gpt2)
else:
config.flat = model_args.flat
config.prefix_len = model_args.prefix_len
config.prefix_dim = model_args.prefix_dim
config.prefix_drop = model_args.prefix_drop
model = GPT2ForProbingViaPrompting(config, gpt2)
# Preprocessing the datasets.
# First we tokenize all the texts.
if training_args.do_train:
column_names = raw_datasets["train"].column_names
else:
column_names = raw_datasets["validation"].column_names
text_column_name = "text" if "text" in column_names else column_names[0]
# since this will be pickled to avoid _LazyModule error in Hasher force logger loading before tokenize_function
tok_logger = transformers.utils.logging.get_logger("transformers.tokenization_utils_base")
tokenizer.pad_token = tokenizer.eos_token
# Record num of params
num_trainable_params = model.num_parameters(only_trainable=True)
num_total_params = model.num_parameters()
logger.info(f"Number of parameters to train (without adapters): {num_trainable_params}")
logger.info(f"Total number of parameters (without adapters): {num_total_params}")
wandb.run.summary["num_trainable_params"] = num_trainable_params
wandb.run.summary["num_total_params"] = num_total_params
def tokenize_function(examples):
result = tokenizer(examples[text_column_name], padding="max_length", max_length=MAX_LENGTH[data_args.task])
examples = {}
examples['input_ids'] = result['input_ids']
examples["labels"] = [
[-100 if mask == 0 else token for mask, token in mask_and_tokens] for mask_and_tokens in
[zip(masks, labels) for masks, labels in zip(result["attention_mask"], result["input_ids"])]
]
for i, elem in enumerate(examples['labels']):
sep_idx = elem.index(tokenizer.eos_token_id) + 1
examples['labels'][i][:sep_idx] = [-100] * sep_idx
return examples
with training_args.main_process_first(desc="dataset map tokenization"):
tokenized_datasets = raw_datasets.map(
tokenize_function,
batched=True,
num_proc=data_args.preprocessing_num_workers,
remove_columns=column_names,
load_from_cache_file=not data_args.overwrite_cache,
desc="Running tokenizer on dataset",
)
if training_args.do_train:
if "train" not in tokenized_datasets:
raise ValueError("--do_train requires a train dataset")
train_dataset = tokenized_datasets["train"]
if data_args.max_train_samples is not None:
train_dataset = train_dataset.select(random.sample(range(len(train_dataset)), data_args.max_train_samples))
if training_args.do_eval:
if "validation" not in tokenized_datasets:
raise ValueError("--do_eval requires a validation dataset")
eval_dataset = tokenized_datasets["validation"]
if data_args.max_eval_samples is not None:
eval_dataset = eval_dataset.select(range(data_args.max_eval_samples))
if model_args.head_mask_path != 'None':
head_mask = torch.load(model_args.head_mask_path)
if model_args.toggle_mask:
head_mask = (head_mask == 0).float()
model.gpt2.apply_masks(head_mask)
if training_args.do_train:
# Optimizer
no_decay = ["bias", "LayerNorm.weight"]
optimizer_grouped_parameters = [
{
"params" : [p for n, p in model.named_parameters() if
not any(nd in n for nd in no_decay) and p.requires_grad],
"weight_decay": training_args.weight_decay,
"lr" : training_args.learning_rate
},
{
"params" : [p for n, p in model.named_parameters() if
any(nd in n for nd in no_decay) and p.requires_grad],
"weight_decay": 0.0,
"lr" : training_args.learning_rate
},
]
if model_args.do_prune:
model.gpt2.apply_dsp(model_args.num_of_heads)
for n, p in model.named_parameters():
if n == "gpt2.w":
p.requires_grad = True
optimizer_grouped_parameters.append(
{
"params": [p for n, p in model.named_parameters() if n == "gpt2.w"],
"lr" : model_args.pruning_lr,
}
)
optimizer = AdamW(optimizer_grouped_parameters)
else:
optimizer = None
# Modify output dir
final_model_output_dir = os.path.join(training_args.output_dir, wandb_proj_name, serial)
training_args.output_dir = os.path.join(training_args.output_dir, wandb_proj_name, serial)
# Initialize our Trainer
trainer = PPTrainer(
model=model,
args=training_args,
train_dataset=train_dataset if training_args.do_train else None,
eval_dataset=eval_dataset if training_args.do_eval else None,
tokenizer=tokenizer,
# Data collator will default to DataCollatorWithPadding, so we change it.
data_collator=default_data_collator,
optimizers=(optimizer, None),
callbacks=[SaveEvalResultsCallback()]
)
# Training
if training_args.do_train:
checkpoint = None
if training_args.resume_from_checkpoint is not None:
checkpoint = training_args.resume_from_checkpoint
elif last_checkpoint is not None:
checkpoint = last_checkpoint
train_result = trainer.train(resume_from_checkpoint=checkpoint)
trainer.save_model(output_dir=final_model_output_dir) # Saves the tokenizer too for easy upload
metrics = train_result.metrics
max_train_samples = (
data_args.max_train_samples if data_args.max_train_samples is not None else len(train_dataset)
)
metrics["train_samples"] = min(max_train_samples, len(train_dataset))
trainer.log_metrics("train", metrics)
if model_args.do_prune:
head_mask = convert_gate_to_mask(model.gpt2.w, model_args.num_of_heads)
model.gpt2.apply_masks(head_mask)
model.gpt2.use_dsp = False
logger.info("Number of heads: {}".format(head_mask.sum()))
logger.info(f'Number of heads in each layer: {head_mask.sum(-1)}')
if training_args.output_dir is not None:
torch.save(head_mask, os.path.join(training_args.output_dir, "mask" + str(model_args.num_of_heads) + ".pt"))
# Evaluation
if training_args.do_eval:
logger.info("*** Evaluate ***")
if model_args.head_mask_path != 'None':
logger.info("Number of heads: {}".format(head_mask.sum()))
metrics = trainer.evaluate()
max_eval_samples = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(eval_dataset)
metrics["eval_samples"] = min(max_eval_samples, len(eval_dataset))
try:
perplexity = math.exp(metrics["eval_loss"])
except OverflowError:
perplexity = float("inf")
metrics["perplexity"] = perplexity
trainer.log_metrics("eval", metrics)
eval_results_df.to_csv(os.path.join(final_model_output_dir, "eval_results.csv"), index=False)
def _mp_fn(index):
# For xla_spawn (TPUs)
main()
if __name__ == "__main__":
main()