forked from pierluigiferrari/ssd_keras
-
Notifications
You must be signed in to change notification settings - Fork 0
/
keras_ssd7.py
431 lines (379 loc) · 29.5 KB
/
keras_ssd7.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
'''
A small 7-layer Keras model with SSD architecture. Also serves as a template to build arbitrary network architectures.
Copyright (C) 2017 Pierluigi Ferrari
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
'''
from __future__ import division
import numpy as np
from keras.models import Model
from keras.layers import Input, Lambda, Conv2D, MaxPooling2D, BatchNormalization, ELU, Reshape, Concatenate, Activation
from keras.regularizers import l2
import keras.backend as K
from keras_layers.keras_layer_AnchorBoxes import AnchorBoxes
from keras_layers.keras_layer_DecodeDetections import DecodeDetections
from keras_layers.keras_layer_DecodeDetections2 import DecodeDetections2
def build_model(image_size,
n_classes,
mode='training',
l2_regularization=0.0,
min_scale=0.1,
max_scale=0.9,
scales=None,
aspect_ratios_global=[0.5, 1.0, 2.0],
aspect_ratios_per_layer=None,
two_boxes_for_ar1=True,
steps=None,
offsets=None,
clip_boxes=False,
variances=[1.0, 1.0, 1.0, 1.0],
coords='centroids',
normalize_coords=False,
subtract_mean=None,
divide_by_stddev=None,
swap_channels=False,
confidence_thresh=0.01,
iou_threshold=0.45,
top_k=200,
nms_max_output_size=400,
return_predictor_sizes=False):
'''
Build a Keras model with SSD architecture, see references.
The model consists of convolutional feature layers and a number of convolutional
predictor layers that take their input from different feature layers.
The model is fully convolutional.
The implementation found here is a smaller version of the original architecture
used in the paper (where the base network consists of a modified VGG-16 extended
by a few convolutional feature layers), but of course it could easily be changed to
an arbitrarily large SSD architecture by following the general design pattern used here.
This implementation has 7 convolutional layers and 4 convolutional predictor
layers that take their input from layers 4, 5, 6, and 7, respectively.
Most of the arguments that this function takes are only needed for the anchor
box layers. In case you're training the network, the parameters passed here must
be the same as the ones used to set up `SSDBoxEncoder`. In case you're loading
trained weights, the parameters passed here must be the same as the ones used
to produce the trained weights.
Some of these arguments are explained in more detail in the documentation of the
`SSDBoxEncoder` class.
Note: Requires Keras v2.0 or later. Training currently works only with the
TensorFlow backend (v1.0 or later).
Arguments:
image_size (tuple): The input image size in the format `(height, width, channels)`.
n_classes (int): The number of positive classes, e.g. 20 for Pascal VOC, 80 for MS COCO.
mode (str, optional): One of 'training', 'inference' and 'inference_fast'. In 'training' mode,
the model outputs the raw prediction tensor, while in 'inference' and 'inference_fast' modes,
the raw predictions are decoded into absolute coordinates and filtered via confidence thresholding,
non-maximum suppression, and top-k filtering. The difference between latter two modes is that
'inference' follows the exact procedure of the original Caffe implementation, while
'inference_fast' uses a faster prediction decoding procedure.
l2_regularization (float, optional): The L2-regularization rate. Applies to all convolutional layers.
min_scale (float, optional): The smallest scaling factor for the size of the anchor boxes as a fraction
of the shorter side of the input images.
max_scale (float, optional): The largest scaling factor for the size of the anchor boxes as a fraction
of the shorter side of the input images. All scaling factors between the smallest and the
largest will be linearly interpolated. Note that the second to last of the linearly interpolated
scaling factors will actually be the scaling factor for the last predictor layer, while the last
scaling factor is used for the second box for aspect ratio 1 in the last predictor layer
if `two_boxes_for_ar1` is `True`.
scales (list, optional): A list of floats containing scaling factors per convolutional predictor layer.
This list must be one element longer than the number of predictor layers. The first `k` elements are the
scaling factors for the `k` predictor layers, while the last element is used for the second box
for aspect ratio 1 in the last predictor layer if `two_boxes_for_ar1` is `True`. This additional
last scaling factor must be passed either way, even if it is not being used. If a list is passed,
this argument overrides `min_scale` and `max_scale`. All scaling factors must be greater than zero.
aspect_ratios_global (list, optional): The list of aspect ratios for which anchor boxes are to be
generated. This list is valid for all predictor layers. The original implementation uses more aspect ratios
for some predictor layers and fewer for others. If you want to do that, too, then use the next argument instead.
aspect_ratios_per_layer (list, optional): A list containing one aspect ratio list for each predictor layer.
This allows you to set the aspect ratios for each predictor layer individually. If a list is passed,
it overrides `aspect_ratios_global`.
two_boxes_for_ar1 (bool, optional): Only relevant for aspect ratio lists that contain 1. Will be ignored otherwise.
If `True`, two anchor boxes will be generated for aspect ratio 1. The first will be generated
using the scaling factor for the respective layer, the second one will be generated using
geometric mean of said scaling factor and next bigger scaling factor.
steps (list, optional): `None` or a list with as many elements as there are predictor layers. The elements can be
either ints/floats or tuples of two ints/floats. These numbers represent for each predictor layer how many
pixels apart the anchor box center points should be vertically and horizontally along the spatial grid over
the image. If the list contains ints/floats, then that value will be used for both spatial dimensions.
If the list contains tuples of two ints/floats, then they represent `(step_height, step_width)`.
If no steps are provided, then they will be computed such that the anchor box center points will form an
equidistant grid within the image dimensions.
offsets (list, optional): `None` or a list with as many elements as there are predictor layers. The elements can be
either floats or tuples of two floats. These numbers represent for each predictor layer how many
pixels from the top and left boarders of the image the top-most and left-most anchor box center points should be
as a fraction of `steps`. The last bit is important: The offsets are not absolute pixel values, but fractions
of the step size specified in the `steps` argument. If the list contains floats, then that value will
be used for both spatial dimensions. If the list contains tuples of two floats, then they represent
`(vertical_offset, horizontal_offset)`. If no offsets are provided, then they will default to 0.5 of the step size,
which is also the recommended setting.
clip_boxes (bool, optional): If `True`, clips the anchor box coordinates to stay within image boundaries.
variances (list, optional): A list of 4 floats >0. The anchor box offset for each coordinate will be divided by
its respective variance value.
coords (str, optional): The box coordinate format to be used internally by the model (i.e. this is not the input format
of the ground truth labels). Can be either 'centroids' for the format `(cx, cy, w, h)` (box center coordinates, width,
and height), 'minmax' for the format `(xmin, xmax, ymin, ymax)`, or 'corners' for the format `(xmin, ymin, xmax, ymax)`.
normalize_coords (bool, optional): Set to `True` if the model is supposed to use relative instead of absolute coordinates,
i.e. if the model predicts box coordinates within [0,1] instead of absolute coordinates.
subtract_mean (array-like, optional): `None` or an array-like object of integers or floating point values
of any shape that is broadcast-compatible with the image shape. The elements of this array will be
subtracted from the image pixel intensity values. For example, pass a list of three integers
to perform per-channel mean normalization for color images.
divide_by_stddev (array-like, optional): `None` or an array-like object of non-zero integers or
floating point values of any shape that is broadcast-compatible with the image shape. The image pixel
intensity values will be divided by the elements of this array. For example, pass a list
of three integers to perform per-channel standard deviation normalization for color images.
swap_channels (list, optional): Either `False` or a list of integers representing the desired order in which the input
image channels should be swapped.
confidence_thresh (float, optional): A float in [0,1), the minimum classification confidence in a specific
positive class in order to be considered for the non-maximum suppression stage for the respective class.
A lower value will result in a larger part of the selection process being done by the non-maximum suppression
stage, while a larger value will result in a larger part of the selection process happening in the confidence
thresholding stage.
iou_threshold (float, optional): A float in [0,1]. All boxes that have a Jaccard similarity of greater than `iou_threshold`
with a locally maximal box will be removed from the set of predictions for a given class, where 'maximal' refers
to the box's confidence score.
top_k (int, optional): The number of highest scoring predictions to be kept for each batch item after the
non-maximum suppression stage.
nms_max_output_size (int, optional): The maximal number of predictions that will be left over after the NMS stage.
return_predictor_sizes (bool, optional): If `True`, this function not only returns the model, but also
a list containing the spatial dimensions of the predictor layers. This isn't strictly necessary since
you can always get their sizes easily via the Keras API, but it's convenient and less error-prone
to get them this way. They are only relevant for training anyway (SSDBoxEncoder needs to know the
spatial dimensions of the predictor layers), for inference you don't need them.
Returns:
model: The Keras SSD model.
predictor_sizes (optional): A Numpy array containing the `(height, width)` portion
of the output tensor shape for each convolutional predictor layer. During
training, the generator function needs this in order to transform
the ground truth labels into tensors of identical structure as the
output tensors of the model, which is in turn needed for the cost
function.
References:
https://arxiv.org/abs/1512.02325v5
'''
n_predictor_layers = 4 # The number of predictor conv layers in the network
n_classes += 1 # Account for the background class.
l2_reg = l2_regularization # Make the internal name shorter.
img_height, img_width, img_channels = image_size[0], image_size[1], image_size[2]
############################################################################
# Get a few exceptions out of the way.
############################################################################
if aspect_ratios_global is None and aspect_ratios_per_layer is None:
raise ValueError("`aspect_ratios_global` and `aspect_ratios_per_layer` cannot both be None. At least one needs to be specified.")
if aspect_ratios_per_layer:
if len(aspect_ratios_per_layer) != n_predictor_layers:
raise ValueError("It must be either aspect_ratios_per_layer is None or len(aspect_ratios_per_layer) == {}, but len(aspect_ratios_per_layer) == {}.".format(n_predictor_layers, len(aspect_ratios_per_layer)))
if (min_scale is None or max_scale is None) and scales is None:
raise ValueError("Either `min_scale` and `max_scale` or `scales` need to be specified.")
if scales:
if len(scales) != n_predictor_layers+1:
raise ValueError("It must be either scales is None or len(scales) == {}, but len(scales) == {}.".format(n_predictor_layers+1, len(scales)))
else: # If no explicit list of scaling factors was passed, compute the list of scaling factors from `min_scale` and `max_scale`
scales = np.linspace(min_scale, max_scale, n_predictor_layers+1)
if len(variances) != 4: # We need one variance value for each of the four box coordinates
raise ValueError("4 variance values must be pased, but {} values were received.".format(len(variances)))
variances = np.array(variances)
if np.any(variances <= 0):
raise ValueError("All variances must be >0, but the variances given are {}".format(variances))
if (not (steps is None)) and (len(steps) != n_predictor_layers):
raise ValueError("You must provide at least one step value per predictor layer.")
if (not (offsets is None)) and (len(offsets) != n_predictor_layers):
raise ValueError("You must provide at least one offset value per predictor layer.")
############################################################################
# Compute the anchor box parameters.
############################################################################
# Set the aspect ratios for each predictor layer. These are only needed for the anchor box layers.
if aspect_ratios_per_layer:
aspect_ratios = aspect_ratios_per_layer
else:
aspect_ratios = [aspect_ratios_global] * n_predictor_layers
# Compute the number of boxes to be predicted per cell for each predictor layer.
# We need this so that we know how many channels the predictor layers need to have.
if aspect_ratios_per_layer:
n_boxes = []
for ar in aspect_ratios_per_layer:
if (1 in ar) & two_boxes_for_ar1:
n_boxes.append(len(ar) + 1) # +1 for the second box for aspect ratio 1
else:
n_boxes.append(len(ar))
else: # If only a global aspect ratio list was passed, then the number of boxes is the same for each predictor layer
if (1 in aspect_ratios_global) & two_boxes_for_ar1:
n_boxes = len(aspect_ratios_global) + 1
else:
n_boxes = len(aspect_ratios_global)
n_boxes = [n_boxes] * n_predictor_layers
if steps is None:
steps = [None] * n_predictor_layers
if offsets is None:
offsets = [None] * n_predictor_layers
############################################################################
# Define functions for the Lambda layers below.
############################################################################
def identity_layer(tensor):
return tensor
def input_mean_normalization(tensor):
return tensor - np.array(subtract_mean)
def input_stddev_normalization(tensor):
return tensor / np.array(divide_by_stddev)
def input_channel_swap(tensor):
if len(swap_channels) == 3:
return K.stack([tensor[...,swap_channels[0]], tensor[...,swap_channels[1]], tensor[...,swap_channels[2]]], axis=-1)
elif len(swap_channels) == 4:
return K.stack([tensor[...,swap_channels[0]], tensor[...,swap_channels[1]], tensor[...,swap_channels[2]], tensor[...,swap_channels[3]]], axis=-1)
############################################################################
# Build the network.
############################################################################
x = Input(shape=(img_height, img_width, img_channels))
# The following identity layer is only needed so that the subsequent lambda layers can be optional.
x1 = Lambda(identity_layer, output_shape=(img_height, img_width, img_channels), name='identity_layer')(x)
if not (subtract_mean is None):
x1 = Lambda(input_mean_normalization, output_shape=(img_height, img_width, img_channels), name='input_mean_normalization')(x1)
if not (divide_by_stddev is None):
x1 = Lambda(input_stddev_normalization, output_shape=(img_height, img_width, img_channels), name='input_stddev_normalization')(x1)
if swap_channels:
x1 = Lambda(input_channel_swap, output_shape=(img_height, img_width, img_channels), name='input_channel_swap')(x1)
conv1 = Conv2D(32, (5, 5), strides=(1, 1), padding="same", kernel_initializer='he_normal', kernel_regularizer=l2(l2_reg), name='conv1')(x1)
conv1 = BatchNormalization(axis=3, momentum=0.99, name='bn1')(conv1) # Tensorflow uses filter format [filter_height, filter_width, in_channels, out_channels], hence axis = 3
conv1 = ELU(name='elu1')(conv1)
pool1 = MaxPooling2D(pool_size=(2, 2), name='pool1')(conv1)
conv2 = Conv2D(48, (3, 3), strides=(1, 1), padding="same", kernel_initializer='he_normal', kernel_regularizer=l2(l2_reg), name='conv2')(pool1)
conv2 = BatchNormalization(axis=3, momentum=0.99, name='bn2')(conv2)
conv2 = ELU(name='elu2')(conv2)
pool2 = MaxPooling2D(pool_size=(2, 2), name='pool2')(conv2)
conv3 = Conv2D(64, (3, 3), strides=(1, 1), padding="same", kernel_initializer='he_normal', kernel_regularizer=l2(l2_reg), name='conv3')(pool2)
conv3 = BatchNormalization(axis=3, momentum=0.99, name='bn3')(conv3)
conv3 = ELU(name='elu3')(conv3)
pool3 = MaxPooling2D(pool_size=(2, 2), name='pool3')(conv3)
conv4 = Conv2D(64, (3, 3), strides=(1, 1), padding="same", kernel_initializer='he_normal', kernel_regularizer=l2(l2_reg), name='conv4')(pool3)
conv4 = BatchNormalization(axis=3, momentum=0.99, name='bn4')(conv4)
conv4 = ELU(name='elu4')(conv4)
pool4 = MaxPooling2D(pool_size=(2, 2), name='pool4')(conv4)
conv5 = Conv2D(48, (3, 3), strides=(1, 1), padding="same", kernel_initializer='he_normal', kernel_regularizer=l2(l2_reg), name='conv5')(pool4)
conv5 = BatchNormalization(axis=3, momentum=0.99, name='bn5')(conv5)
conv5 = ELU(name='elu5')(conv5)
pool5 = MaxPooling2D(pool_size=(2, 2), name='pool5')(conv5)
conv6 = Conv2D(48, (3, 3), strides=(1, 1), padding="same", kernel_initializer='he_normal', kernel_regularizer=l2(l2_reg), name='conv6')(pool5)
conv6 = BatchNormalization(axis=3, momentum=0.99, name='bn6')(conv6)
conv6 = ELU(name='elu6')(conv6)
pool6 = MaxPooling2D(pool_size=(2, 2), name='pool6')(conv6)
conv7 = Conv2D(32, (3, 3), strides=(1, 1), padding="same", kernel_initializer='he_normal', kernel_regularizer=l2(l2_reg), name='conv7')(pool6)
conv7 = BatchNormalization(axis=3, momentum=0.99, name='bn7')(conv7)
conv7 = ELU(name='elu7')(conv7)
# The next part is to add the convolutional predictor layers on top of the base network
# that we defined above. Note that I use the term "base network" differently than the paper does.
# To me, the base network is everything that is not convolutional predictor layers or anchor
# box layers. In this case we'll have four predictor layers, but of course you could
# easily rewrite this into an arbitrarily deep base network and add an arbitrary number of
# predictor layers on top of the base network by simply following the pattern shown here.
# Build the convolutional predictor layers on top of conv layers 4, 5, 6, and 7.
# We build two predictor layers on top of each of these layers: One for class prediction (classification), one for box coordinate prediction (localization)
# We precidt `n_classes` confidence values for each box, hence the `classes` predictors have depth `n_boxes * n_classes`
# We predict 4 box coordinates for each box, hence the `boxes` predictors have depth `n_boxes * 4`
# Output shape of `classes`: `(batch, height, width, n_boxes * n_classes)`
classes4 = Conv2D(n_boxes[0] * n_classes, (3, 3), strides=(1, 1), padding="same", kernel_initializer='he_normal', kernel_regularizer=l2(l2_reg), name='classes4')(conv4)
classes5 = Conv2D(n_boxes[1] * n_classes, (3, 3), strides=(1, 1), padding="same", kernel_initializer='he_normal', kernel_regularizer=l2(l2_reg), name='classes5')(conv5)
classes6 = Conv2D(n_boxes[2] * n_classes, (3, 3), strides=(1, 1), padding="same", kernel_initializer='he_normal', kernel_regularizer=l2(l2_reg), name='classes6')(conv6)
classes7 = Conv2D(n_boxes[3] * n_classes, (3, 3), strides=(1, 1), padding="same", kernel_initializer='he_normal', kernel_regularizer=l2(l2_reg), name='classes7')(conv7)
# Output shape of `boxes`: `(batch, height, width, n_boxes * 4)`
boxes4 = Conv2D(n_boxes[0] * 4, (3, 3), strides=(1, 1), padding="same", kernel_initializer='he_normal', kernel_regularizer=l2(l2_reg), name='boxes4')(conv4)
boxes5 = Conv2D(n_boxes[1] * 4, (3, 3), strides=(1, 1), padding="same", kernel_initializer='he_normal', kernel_regularizer=l2(l2_reg), name='boxes5')(conv5)
boxes6 = Conv2D(n_boxes[2] * 4, (3, 3), strides=(1, 1), padding="same", kernel_initializer='he_normal', kernel_regularizer=l2(l2_reg), name='boxes6')(conv6)
boxes7 = Conv2D(n_boxes[3] * 4, (3, 3), strides=(1, 1), padding="same", kernel_initializer='he_normal', kernel_regularizer=l2(l2_reg), name='boxes7')(conv7)
# Generate the anchor boxes
# Output shape of `anchors`: `(batch, height, width, n_boxes, 8)`
anchors4 = AnchorBoxes(img_height, img_width, this_scale=scales[0], next_scale=scales[1], aspect_ratios=aspect_ratios[0],
two_boxes_for_ar1=two_boxes_for_ar1, this_steps=steps[0], this_offsets=offsets[0],
clip_boxes=clip_boxes, variances=variances, coords=coords, normalize_coords=normalize_coords, name='anchors4')(boxes4)
anchors5 = AnchorBoxes(img_height, img_width, this_scale=scales[1], next_scale=scales[2], aspect_ratios=aspect_ratios[1],
two_boxes_for_ar1=two_boxes_for_ar1, this_steps=steps[1], this_offsets=offsets[1],
clip_boxes=clip_boxes, variances=variances, coords=coords, normalize_coords=normalize_coords, name='anchors5')(boxes5)
anchors6 = AnchorBoxes(img_height, img_width, this_scale=scales[2], next_scale=scales[3], aspect_ratios=aspect_ratios[2],
two_boxes_for_ar1=two_boxes_for_ar1, this_steps=steps[2], this_offsets=offsets[2],
clip_boxes=clip_boxes, variances=variances, coords=coords, normalize_coords=normalize_coords, name='anchors6')(boxes6)
anchors7 = AnchorBoxes(img_height, img_width, this_scale=scales[3], next_scale=scales[4], aspect_ratios=aspect_ratios[3],
two_boxes_for_ar1=two_boxes_for_ar1, this_steps=steps[3], this_offsets=offsets[3],
clip_boxes=clip_boxes, variances=variances, coords=coords, normalize_coords=normalize_coords, name='anchors7')(boxes7)
# Reshape the class predictions, yielding 3D tensors of shape `(batch, height * width * n_boxes, n_classes)`
# We want the classes isolated in the last axis to perform softmax on them
classes4_reshaped = Reshape((-1, n_classes), name='classes4_reshape')(classes4)
classes5_reshaped = Reshape((-1, n_classes), name='classes5_reshape')(classes5)
classes6_reshaped = Reshape((-1, n_classes), name='classes6_reshape')(classes6)
classes7_reshaped = Reshape((-1, n_classes), name='classes7_reshape')(classes7)
# Reshape the box coordinate predictions, yielding 3D tensors of shape `(batch, height * width * n_boxes, 4)`
# We want the four box coordinates isolated in the last axis to compute the smooth L1 loss
boxes4_reshaped = Reshape((-1, 4), name='boxes4_reshape')(boxes4)
boxes5_reshaped = Reshape((-1, 4), name='boxes5_reshape')(boxes5)
boxes6_reshaped = Reshape((-1, 4), name='boxes6_reshape')(boxes6)
boxes7_reshaped = Reshape((-1, 4), name='boxes7_reshape')(boxes7)
# Reshape the anchor box tensors, yielding 3D tensors of shape `(batch, height * width * n_boxes, 8)`
anchors4_reshaped = Reshape((-1, 8), name='anchors4_reshape')(anchors4)
anchors5_reshaped = Reshape((-1, 8), name='anchors5_reshape')(anchors5)
anchors6_reshaped = Reshape((-1, 8), name='anchors6_reshape')(anchors6)
anchors7_reshaped = Reshape((-1, 8), name='anchors7_reshape')(anchors7)
# Concatenate the predictions from the different layers and the assosciated anchor box tensors
# Axis 0 (batch) and axis 2 (n_classes or 4, respectively) are identical for all layer predictions,
# so we want to concatenate along axis 1
# Output shape of `classes_concat`: (batch, n_boxes_total, n_classes)
classes_concat = Concatenate(axis=1, name='classes_concat')([classes4_reshaped,
classes5_reshaped,
classes6_reshaped,
classes7_reshaped])
# Output shape of `boxes_concat`: (batch, n_boxes_total, 4)
boxes_concat = Concatenate(axis=1, name='boxes_concat')([boxes4_reshaped,
boxes5_reshaped,
boxes6_reshaped,
boxes7_reshaped])
# Output shape of `anchors_concat`: (batch, n_boxes_total, 8)
anchors_concat = Concatenate(axis=1, name='anchors_concat')([anchors4_reshaped,
anchors5_reshaped,
anchors6_reshaped,
anchors7_reshaped])
# The box coordinate predictions will go into the loss function just the way they are,
# but for the class predictions, we'll apply a softmax activation layer first
classes_softmax = Activation('softmax', name='classes_softmax')(classes_concat)
# Concatenate the class and box coordinate predictions and the anchors to one large predictions tensor
# Output shape of `predictions`: (batch, n_boxes_total, n_classes + 4 + 8)
predictions = Concatenate(axis=2, name='predictions')([classes_softmax, boxes_concat, anchors_concat])
if mode == 'training':
model = Model(inputs=x, outputs=predictions)
elif mode == 'inference':
decoded_predictions = DecodeDetections(confidence_thresh=confidence_thresh,
iou_threshold=iou_threshold,
top_k=top_k,
nms_max_output_size=nms_max_output_size,
coords=coords,
normalize_coords=normalize_coords,
img_height=img_height,
img_width=img_width,
name='decoded_predictions')(predictions)
model = Model(inputs=x, outputs=decoded_predictions)
elif mode == 'inference_fast':
decoded_predictions = DecodeDetections2(confidence_thresh=confidence_thresh,
iou_threshold=iou_threshold,
top_k=top_k,
nms_max_output_size=nms_max_output_size,
coords=coords,
normalize_coords=normalize_coords,
img_height=img_height,
img_width=img_width,
name='decoded_predictions')(predictions)
model = Model(inputs=x, outputs=decoded_predictions)
else:
raise ValueError("`mode` must be one of 'training', 'inference' or 'inference_fast', but received '{}'.".format(mode))
if return_predictor_sizes:
# The spatial dimensions are the same for the `classes` and `boxes` predictor layers.
predictor_sizes = np.array([classes4._keras_shape[1:3],
classes5._keras_shape[1:3],
classes6._keras_shape[1:3],
classes7._keras_shape[1:3]])
return model, predictor_sizes
else:
return model