title | math | date | categories | tags | ||||
---|---|---|---|---|---|---|---|---|
PyTorch学习笔记(9)循环神经网络RNN |
true |
2023-07-31 16:52:08 -0700 |
|
|
通常表示为 [word num, batch, word vec],即 [单词数,句子数,单词的特征维度数]
h 表示连续的语义信息,为了减少参数量,所以 w 和 h 参数都是权重共享的
需要注意的是,$W_R$ 就是
从梯度推导公式中可以看出,$\frac{\partial h_{k}}{\partial h_1}=\prod_{i}^{k}diag\left(f^{\prime}\left(W_{I}x_{i}+W_{R}h_{i-1}\right)\right)W_{R}$,里面包含了
梯度爆炸可以尝试通过梯度裁剪解决,梯度弥散就需要靠 LSTM 网络啦
import torch
from torch import nn
from torch import optim
from torch.nn import functional as F
def main():
rnn = nn.RNN(input_size=100, hidden_size=20, num_layers=1)
print(rnn)
x = torch.randn(10, 3, 100)
out, h = rnn(x, torch.zeros(1, 3, 20))
print(out.shape, h.shape)
rnn = nn.RNN(input_size=100, hidden_size=20, num_layers=4)
print(rnn)
x = torch.randn(10, 3, 100)
out, h = rnn(x, torch.zeros(4, 3, 20))
print(out.shape, h.shape)
# print(vars(rnn))
print('rnn by cell')
cell1 = nn.RNNCell(100, 20)
h1 = torch.zeros(3, 20)
for xt in x:
h1 = cell1(xt, h1)
print(h1.shape)
cell1 = nn.RNNCell(100, 30)
cell2 = nn.RNNCell(30, 20)
h1 = torch.zeros(3, 30)
h2 = torch.zeros(3, 20)
for xt in x:
h1 = cell1(xt, h1)
h2 = cell2(h1, h2)
print(h2.shape)
print('Lstm')
lstm = nn.LSTM(input_size=100, hidden_size=20, num_layers=4)
print(lstm)
x = torch.randn(10, 3, 100)
out, (h, c) = lstm(x)
print(out.shape, h.shape, c.shape)
print('one layer lstm')
cell = nn.LSTMCell(input_size=100, hidden_size=20)
h = torch.zeros(3, 20)
c = torch.zeros(3, 20)
for xt in x:
h, c = cell(xt, [h, c])
print(h.shape, c.shape)
print('two layer lstm')
cell1 = nn.LSTMCell(input_size=100, hidden_size=30)
cell2 = nn.LSTMCell(input_size=30, hidden_size=20)
h1 = torch.zeros(3, 30)
c1 = torch.zeros(3, 30)
h2 = torch.zeros(3, 20)
c2 = torch.zeros(3, 20)
for xt in x:
h1, c1 = cell1(xt, [h1, c1])
h2, c2 = cell2(h1, [h2, c2])
print(h2.shape, c2.shape)
if __name__ == '__main__':
main()
参考:时间序列预测.pdf
import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
from matplotlib import pyplot as plt
num_time_steps = 50
input_size = 1
hidden_size = 16
output_size = 1
lr=0.01
class Net(nn.Module):
def __init__(self, ):
super(Net, self).__init__()
self.rnn = nn.RNN(
input_size=input_size,
hidden_size=hidden_size,
num_layers=1,
batch_first=True,
)
for p in self.rnn.parameters():
nn.init.normal_(p, mean=0.0, std=0.001)
self.linear = nn.Linear(hidden_size, output_size)
def forward(self, x, hidden_prev):
out, hidden_prev = self.rnn(x, hidden_prev)
# [b, seq, h]
out = out.view(-1, hidden_size)
out = self.linear(out)
out = out.unsqueeze(dim=0)
return out, hidden_prev
model = Net()
criterion = nn.MSELoss()
optimizer = optim.Adam(model.parameters(), lr)
hidden_prev = torch.zeros(1, 1, hidden_size)
for iter in range(6000):
start = np.random.randint(3, size=1)[0]
time_steps = np.linspace(start, start + 10, num_time_steps)
data = np.sin(time_steps)
data = data.reshape(num_time_steps, 1)
x = torch.tensor(data[:-1]).float().view(1, num_time_steps - 1, 1)
y = torch.tensor(data[1:]).float().view(1, num_time_steps - 1, 1)
output, hidden_prev = model(x, hidden_prev)
hidden_prev = hidden_prev.detach()
loss = criterion(output, y)
model.zero_grad()
loss.backward()
# for p in model.parameters():
# print(p.grad.norm())
# torch.nn.utils.clip_grad_norm_(p, 10)
optimizer.step()
if iter % 100 == 0:
print("Iteration: {} loss {}".format(iter, loss.item()))
start = np.random.randint(3, size=1)[0]
time_steps = np.linspace(start, start + 10, num_time_steps)
data = np.sin(time_steps)
data = data.reshape(num_time_steps, 1)
x = torch.tensor(data[:-1]).float().view(1, num_time_steps - 1, 1)
y = torch.tensor(data[1:]).float().view(1, num_time_steps - 1, 1)
predictions = []
input = x[:, 0, :]
for _ in range(x.shape[1]):
input = input.view(1, 1, 1)
(pred, hidden_prev) = model(input, hidden_prev)
input = pred
predictions.append(pred.detach().numpy().ravel()[0])
x = x.data.numpy().ravel()
y = y.data.numpy()
plt.scatter(time_steps[:-1], x.ravel(), s=90)
plt.plot(time_steps[:-1], x.ravel())
plt.scatter(time_steps[1:], predictions)
plt.show()