-
Notifications
You must be signed in to change notification settings - Fork 0
/
DESCRIPTION
39 lines (39 loc) · 1.24 KB
/
DESCRIPTION
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
Package: NetActivity
Type: Package
Title: Compute gene set scores from a deep learning framework
Version: 1.1.1
Authors@R: c(person("Carlos", "Ruiz-Arenas", , "carlos.ruiza@upf.edu", role = c("aut", "cre")))
Description: #' NetActivity enables to compute gene set scores from previously trained sparsely-connected
autoencoders. The package contains a function to prepare the data (`prepareSummarizedExperiment`) and
a function to compute the gene set scores (`computeGeneSetScores`). The package `NetActivityData`
contains different pre-trained models to be directly applied to the data. Alternatively,
the users might use the package to compute gene set scores using custom models.
License: MIT + file LICENSE
Encoding: UTF-8
LazyData: false
Depends:
R (>= 4.1.0)
Suggests:
AnnotationDbi,
BiocStyle,
Fletcher2013a,
knitr,
org.Hs.eg.db,
rmarkdown,
testthat (>= 3.0.0),
tidyverse
Config/testthat/edition: 3
biocViews: RNASeq, Microarray, Transcription, FunctionalGenomics,
GO, GeneExpression, Pathways, Software
RoxygenNote: 7.2.1
Imports:
airway,
DelayedArray,
DelayedMatrixStats,
DESeq2,
methods,
methods,
NetActivityData,
SummarizedExperiment,
utils
VignetteBuilder: knitr