-
Notifications
You must be signed in to change notification settings - Fork 54
/
main.py
46 lines (40 loc) · 1.51 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
from config import train_config
from train import distributed_train,main_worker
from evaluation import all_eval
import argparse
import fire
import torch
import subprocess
#torch.autograd.set_detect_anomaly(True)
def pretrain():
name='Efb4'
url='tcp://127.0.0.1:27015'
Config=train_config(name,['ff-all-c23','efficientnet-b4'],url=url,attention_layer='b5',feature_layer='logits',epochs=20,batch_size=16,AGDA_loss_weight=0)
Config.mkdirs()
distributed_train(Config)
procs=[subprocess.Popen(['/bin/bash','-c','CUDA_VISIBLE_DEVICES={} python main.py test {} {}'.format(i,name,j)]) for i,j in enumerate(range(-3,0))]
for i in procs:
i.wait()
## do pretrain first!
def aexp():
name='a1_b5_b2'
url='tcp://127.0.0.1:27016'
Config=train_config(name,['ff-all-c23','efficientnet-b4'],url=url,attention_layer='b5',feature_layer='b2',epochs=50,batch_size=15,\
ckpt='checkpoints/Efb4/ckpt_19.pth',inner_margin=[0.2,-0.8],margin=0.8)
Config.mkdirs()
distributed_train(Config)
procs=[subprocess.Popen(['/bin/bash','-c','CUDA_VISIBLE_DEVICES={} python main.py test {} {}'.format(i,name,j)]) for i,j in enumerate(range(-3,0))]
for i in procs:
i.wait()
def resume(name,epochs=0):
Config=train_config.load(name)
Config.epochs+=epochs
Config.reload()
Config.resume_optim=True
distributed_train(Config)
for i in range(-3,0):
all_eval(name,i)
def test(name,ckpt=None):
all_eval(name,ckpt)
if __name__=="__main__":
fire.Fire()