-
Notifications
You must be signed in to change notification settings - Fork 216
/
test_frcnn.py
257 lines (192 loc) · 8.51 KB
/
test_frcnn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
from __future__ import division
import os
import cv2
import numpy as np
import sys
import pickle
from optparse import OptionParser
import time
from keras_frcnn import config
from keras import backend as K
from keras.layers import Input
from keras.models import Model
from keras_frcnn import roi_helpers
# Set learning phase to 0 for model.predict. Set to 1 for training
K.set_learning_phase(0)
sys.setrecursionlimit(40000)
parser = OptionParser()
parser.add_option("-p", "--path", dest="test_path", help="Path to test data.")
parser.add_option("-n", "--num_rois", dest="num_rois",
help="Number of ROIs per iteration. Higher means more memory use.", default=32)
parser.add_option("--config_filename", dest="config_filename", help="Location to read the metadata related to the training (generated when training).",
default="config.pickle")
parser.add_option("--network", dest="network", help="Base network to use. Supports vgg or resnet50.", default='resnet50')
(options, args) = parser.parse_args()
if not options.test_path: # if filename is not given
parser.error('Error: path to test data must be specified. Pass --path to command line')
config_output_filename = options.config_filename
with open(config_output_filename, 'rb') as f_in:
C = pickle.load(f_in)
if C.network == 'resnet50':
import keras_frcnn.resnet as nn
elif C.network == 'xception':
import keras_frcnn.xception as nn
elif C.network == 'inception_resnet_v2':
import keras_frcnn.inception_resnet_v2 as nn
elif C.network == 'vgg':
import keras_frcnn.vgg as nn
# turn off any data augmentation at test time
C.use_horizontal_flips = False
C.use_vertical_flips = False
C.rot_90 = False
img_path = options.test_path
def format_img_size(img, C):
""" formats the image size based on config """
img_min_side = float(C.im_size)
(height, width ,_) = img.shape
if width <= height:
ratio = img_min_side/width
new_height = int(ratio * height)
new_width = int(img_min_side)
else:
ratio = img_min_side/height
new_width = int(ratio * width)
new_height = int(img_min_side)
img = cv2.resize(img, (new_width, new_height), interpolation=cv2.INTER_CUBIC)
return img, ratio
def format_img_channels(img, C):
""" formats the image channels based on config """
img = img[:, :, (2, 1, 0)]
img = img.astype(np.float32)
img[:, :, 0] -= C.img_channel_mean[0]
img[:, :, 1] -= C.img_channel_mean[1]
img[:, :, 2] -= C.img_channel_mean[2]
img /= C.img_scaling_factor
img = np.transpose(img, (2, 0, 1))
img = np.expand_dims(img, axis=0)
return img
def format_img(img, C):
""" formats an image for model prediction based on config """
img, ratio = format_img_size(img, C)
img = format_img_channels(img, C)
return img, ratio
# Method to transform the coordinates of the bounding box to its original size
def get_real_coordinates(ratio, x1, y1, x2, y2):
real_x1 = int(round(x1 // ratio))
real_y1 = int(round(y1 // ratio))
real_x2 = int(round(x2 // ratio))
real_y2 = int(round(y2 // ratio))
return (real_x1, real_y1, real_x2 ,real_y2)
class_mapping = C.class_mapping
if 'bg' not in class_mapping:
class_mapping['bg'] = len(class_mapping)
class_mapping = {v: k for k, v in class_mapping.items()}
print(class_mapping)
class_to_color = {class_mapping[v]: np.random.randint(0, 255, 3) for v in class_mapping}
C.num_rois = int(options.num_rois)
if C.network == 'resnet50':
num_features = 1024
elif C.network == 'xception':
num_features = 1024
elif C.network == 'inception_resnet_v2':
num_features = 1088
elif C.network == 'vgg':
num_features = 512
if K.image_dim_ordering() == 'th':
input_shape_img = (3, None, None)
input_shape_features = (num_features, None, None)
else:
input_shape_img = (None, None, 3)
input_shape_features = (None, None, num_features)
img_input = Input(shape=input_shape_img)
roi_input = Input(shape=(C.num_rois, 4))
feature_map_input = Input(shape=input_shape_features)
# define the base network (resnet here, can be VGG, Inception, etc)
shared_layers = nn.nn_base(img_input, trainable=True)
# define the RPN, built on the base layers
num_anchors = len(C.anchor_box_scales) * len(C.anchor_box_ratios)
rpn_layers = nn.rpn(shared_layers, num_anchors)
classifier = nn.classifier(feature_map_input, roi_input, C.num_rois, nb_classes=len(class_mapping), trainable=True)
model_rpn = Model(img_input, rpn_layers)
model_classifier = Model([feature_map_input, roi_input], classifier)
print('Loading weights from {}'.format(C.model_path))
model_rpn.load_weights(C.model_path, by_name=True)
model_classifier.load_weights(C.model_path, by_name=True)
model_rpn.compile(optimizer='sgd', loss='mse')
model_classifier.compile(optimizer='sgd', loss='mse')
all_imgs = []
classes = {}
bbox_threshold = 0.8
visualise = True
for idx, img_name in enumerate(sorted(os.listdir(img_path))):
if not img_name.lower().endswith(('.bmp', '.jpeg', '.jpg', '.png', '.tif', '.tiff')):
continue
print(img_name)
st = time.time()
filepath = os.path.join(img_path,img_name)
img = cv2.imread(filepath)
X, ratio = format_img(img, C)
if K.image_dim_ordering() == 'tf':
X = np.transpose(X, (0, 2, 3, 1))
# get the feature maps and output from the RPN
[Y1, Y2, F] = model_rpn.predict(X)
R = roi_helpers.rpn_to_roi(Y1, Y2, C, K.image_dim_ordering(), overlap_thresh=0.7)
# convert from (x1,y1,x2,y2) to (x,y,w,h)
R[:, 2] -= R[:, 0]
R[:, 3] -= R[:, 1]
# apply the spatial pyramid pooling to the proposed regions
bboxes = {}
probs = {}
for jk in range(R.shape[0]//C.num_rois + 1):
ROIs = np.expand_dims(R[C.num_rois*jk:C.num_rois*(jk+1), :], axis=0)
if ROIs.shape[1] == 0:
break
if jk == R.shape[0]//C.num_rois:
#pad R
curr_shape = ROIs.shape
target_shape = (curr_shape[0],C.num_rois,curr_shape[2])
ROIs_padded = np.zeros(target_shape).astype(ROIs.dtype)
ROIs_padded[:, :curr_shape[1], :] = ROIs
ROIs_padded[0, curr_shape[1]:, :] = ROIs[0, 0, :]
ROIs = ROIs_padded
[P_cls, P_regr] = model_classifier.predict([F, ROIs])
for ii in range(P_cls.shape[1]):
if np.max(P_cls[0, ii, :]) < bbox_threshold or np.argmax(P_cls[0, ii, :]) == (P_cls.shape[2] - 1):
continue
cls_name = class_mapping[np.argmax(P_cls[0, ii, :])]
if cls_name not in bboxes:
bboxes[cls_name] = []
probs[cls_name] = []
(x, y, w, h) = ROIs[0, ii, :]
cls_num = np.argmax(P_cls[0, ii, :])
try:
(tx, ty, tw, th) = P_regr[0, ii, 4*cls_num:4*(cls_num+1)]
tx /= C.classifier_regr_std[0]
ty /= C.classifier_regr_std[1]
tw /= C.classifier_regr_std[2]
th /= C.classifier_regr_std[3]
x, y, w, h = roi_helpers.apply_regr(x, y, w, h, tx, ty, tw, th)
except:
pass
bboxes[cls_name].append([C.rpn_stride*x, C.rpn_stride*y, C.rpn_stride*(x+w), C.rpn_stride*(y+h)])
probs[cls_name].append(np.max(P_cls[0, ii, :]))
all_dets = []
for key in bboxes:
bbox = np.array(bboxes[key])
new_boxes, new_probs = roi_helpers.non_max_suppression_fast(bbox, np.array(probs[key]), overlap_thresh=0.5)
for jk in range(new_boxes.shape[0]):
(x1, y1, x2, y2) = new_boxes[jk,:]
(real_x1, real_y1, real_x2, real_y2) = get_real_coordinates(ratio, x1, y1, x2, y2)
cv2.rectangle(img,(real_x1, real_y1), (real_x2, real_y2), (int(class_to_color[key][0]), int(class_to_color[key][1]), int(class_to_color[key][2])),2)
textLabel = '{}: {}'.format(key,int(100*new_probs[jk]))
all_dets.append((key,100*new_probs[jk]))
(retval,baseLine) = cv2.getTextSize(textLabel,cv2.FONT_HERSHEY_COMPLEX,1,1)
textOrg = (real_x1, real_y1-0)
cv2.rectangle(img, (textOrg[0] - 5, textOrg[1]+baseLine - 5), (textOrg[0]+retval[0] + 5, textOrg[1]-retval[1] - 5), (0, 0, 0), 2)
cv2.rectangle(img, (textOrg[0] - 5,textOrg[1]+baseLine - 5), (textOrg[0]+retval[0] + 5, textOrg[1]-retval[1] - 5), (255, 255, 255), -1)
cv2.putText(img, textLabel, textOrg, cv2.FONT_HERSHEY_DUPLEX, 1, (0, 0, 0), 1)
print('Elapsed time = {}'.format(time.time() - st))
print(all_dets)
#cv2.imshow('img', img)
#cv2.waitKey(0)
cv2.imwrite('./results_imgs/{}.png'.format(idx),img)