forked from Pymol-Scripts/Pymol-script-repo
-
Notifications
You must be signed in to change notification settings - Fork 0
/
modevectors.py
279 lines (251 loc) · 12.3 KB
/
modevectors.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
'''
See more here: http://www.pymolwiki.org/index.php/Modevectors
'''
from __future__ import print_function
from pymol.cgo import * # get constants
from math import *
from pymol import cmd
def modevectors(first_obj_frame, last_obj_frame, first_state=1, last_state=1, outname="modevectors", head=1.0, tail=0.3, head_length=1.5, headrgb="1.0,1.0,1.0", tailrgb="1.0,1.0,1.0", cutoff=4.0, skip=0, cut=0.5, atom="CA", stat="show", factor=1.0, notail=0):
"""
Authors Sean Law & Srinivasa
Michigan State University
slaw_(at)_msu_dot_edu
Editor Sacha Yee
USAGE
While in PyMOL
Parameter Preset Type Description
first_obj_frame Undefined String Object name of the first structure. The mode vector will propagate from this structure. Defined by user.
last_obj_frame Undefined String Object name of the last structure. The mode vector (arrow head) will end at this structure. Defined by user.
first_state 1 Integer Defines state of first object
last_state 1 Integer Defines state of last object
outname modevectors String Name of object to store mode vectors in.
head 1.0 Float Radius for the circular base of the arrow head (cone)
tail 0.3 Float Radius for the cylinder of the arrow tail (cylinder)
head_length 1.5 Float Length of the arrow head (from the base of the cone to the tip of cone)
head_rgb 1.0,1.0,1.0 String RGB colour for the arrow head.
tail_rgb 1.0,1.0,1.0 String RGB colour for the arrow tail.
cutoff 4.0 Float Skips mode vectors that do not meet the cutoff distance (in Angstroms).
skip 0 Integer Denotes how many atoms to skip. No arrows will be created for skipped atoms.
cut 0.0 Float Truncates all arrow tail lengths (without disturbing the arrow head) (in Angstroms).
atom CA String Designates the atom to derive mode vectors from.
stat show String Keeps track and prints statistics (total modevectors, skipped, cutoff).
factor 1.0 Float Multiplies each mode vector length by a specified factor.
Values between 0 and 1 will decrease the relative mode vector length.
Values greater than 1 will increase the relative mode vector length.
notail 0 Integer Hides tails and only uses cones (porcupine plot)
"""
framefirst = cmd.get_model(first_obj_frame, first_state)
framelast = cmd.get_model(last_obj_frame, last_state)
objectname = outname
factor = float(factor)
arrow_head_radius = float(head)
arrow_tail_radius = float(tail)
arrow_head_length = float(head_length)
cutoff = float(cutoff)
skip = int(skip)
cut = float(cut)
atomtype = atom.strip('"[]()')
objectname = objectname.strip('"[]()')
headrgb = headrgb.strip('" []()')
tailrgb = tailrgb.strip('" []()')
hr, hg, hb = list(map(float, headrgb.split(',')))
tr, tg, tb = list(map(float, tailrgb.split(',')))
version = cmd.get_version()[1]
arrow = []
arrowhead = []
arrowtail = []
x1 = []
y1 = []
z1 = []
x2 = []
y2 = []
z2 = []
exit_flag = False
##############################################################
# #
# Define an object called "tail" and store the tail and a #
# circular base of the triangle in this object. #
# #
##############################################################
skipcount = 0
skipcounter = 0
keepcounter = 0
atom_lookup = {}
for atom in framefirst.atom:
if atom.name == atomtype:
if skipcount == skip:
x1.append(atom.coord[0])
y1.append(atom.coord[1])
z1.append(atom.coord[2])
##########################################
# #
# Set atom_lookup for a specific atom #
# equal to ONE for the first input set. #
# This dictionary will be used as a #
# reference for the second set. #
# #
##########################################
current_atom = "CHAIN " + atom.chain + " RESID "\
+ atom.resi + " RESTYPE "\
+ atom.resn +\
" ATMNUM " + str(atom.index)
# print current_atom
atom_lookup['current_atom'] = 1
skipcount = 0
keepcounter += 1
else:
# print skipcount
skipcount += 1
skipcounter += 1
skipcount = 0
for atom in framelast.atom:
if atom.name == atomtype:
if skipcount == skip:
x2.append(atom.coord[0])
y2.append(atom.coord[1])
z2.append(atom.coord[2])
#########################################
# #
# Get atom information from second set #
# and compare with first set. All #
# atoms from this second set MUST be #
# found in the first set! Otherwise, #
# the script will exit with an error #
# since modevectors can only be created #
# by calculating values from identical #
# sources. #
# #
#########################################
current_atom = "CHAIN " + atom.chain + " RESID "\
+ atom.resi + " RESTYPE "\
+ atom.resn +\
" ATMNUM " + str(atom.index)
# print current_atom
if 'current_atom' not in atom_lookup:
print("\nError: " + current_atom + " from \""\
+ last_obj_frame +\
" \"is not found in \"" + first_obj_frame + "\".")
print("\nPlease check your input and/or selections and try again.")
exit_flag = True
break
skipcount = 0
else:
skipcount += 1
if exit_flag == 1:
###########################################
# #
# Exit script because an atom cannot be #
# found in both input files #
# #
###########################################
return
cutoff_counter = 0 # Track number of atoms failing to meet the cutoff
###################################################
# #
# Check that the two selections/PDB files contain #
# the same number of atoms. #
# #
###################################################
if len(x2) != len(x1):
print("\nError: \"" + first_obj_frame +\
"\" and \"" + last_obj_frame +\
"\" contain different number of residue/atoms.")
print("\nPlease check your input and/or selections and try again.")
return
else:
# Continue with representing modevectors!
#########################################
# #
# Delete old selection or object if it #
# exists so that it can be overwritten #
# #
#########################################
save_view = cmd.get_view(output=1, quiet=1)
cmd.delete(objectname)
cmd.hide(representation="everything", selection=first_obj_frame)
cmd.hide(representation="everything", selection=last_obj_frame)
###################################################
# #
# Begin drawing arrow tails #
# #
###################################################
arrowtail = []
for mv in range(len(x1)):
vectorx = x2[mv] - x1[mv]
vectory = y2[mv] - y1[mv]
vectorz = z2[mv] - z1[mv]
length = sqrt(vectorx ** 2 + vectory ** 2 + vectorz ** 2)
if length < cutoff:
cutoff_counter += 1
continue
t = 1.0 - (cut / length)
x2[mv] = x1[mv] + factor * t * vectorx
y2[mv] = y1[mv] + factor * t * vectory
z2[mv] = z1[mv] + factor * t * vectorz
vectorx = x2[mv] - x1[mv]
vectory = y2[mv] - y1[mv]
vectorz = z2[mv] - z1[mv]
length = sqrt(vectorx ** 2 + vectory ** 2 + vectorz ** 2)
d = arrow_head_length # Distance from arrow tip to arrow base
t = 1.0 - (d / length)
if notail:
t = 0
tail = [
# Tail of cylinder
CYLINDER, x1[mv], y1[mv], z1[mv]\
, x1[mv] + (t + 0.01) * vectorx, y1[mv] + (t + 0.01) * vectory, z1[mv] + (t + 0.01) * vectorz\
, arrow_tail_radius, tr, tg, tb, tr, tg, tb # Radius and RGB for each cylinder tail
]
if notail == 0:
arrow.extend(tail)
x = x1[mv] + t * vectorx
y = y1[mv] + t * vectory
z = z1[mv] + t * vectorz
dx = x2[mv] - x
dy = y2[mv] - y
dz = z2[mv] - z
seg = d / 100
intfactor = int(factor)
if version < 1.1: # Version >= 1.1 has cone primitive
for i in range(100, 0, -1): # i=100 is tip of cone
print(i)
t1 = seg * i
t2 = seg * (i + 1)
radius = arrow_head_radius * (1.0 - i / (100.0)) # Radius of each disc that forms cone
head = [
CYLINDER, x + t2 * dx, y + t2 * dy, z + t2 * dz\
, x + t1 * dx, y + t1 * dy, z + t1 * dz\
, radius, hr, hg, hb, hr, hg, hb # Radius and RGB for slice of arrow head
]
arrow.extend(head)
else:
head = [
CONE, x, y, z, x + d * dx, y + d * dy, z + d * dz, arrow_head_radius, 0.0, hr, hg, hb, hr, hg, hb, 1.0, 1.0]
arrow.extend(head)
##############################################################
# #
# Load the entire object into PyMOL #
# #
# Print statistics if requested by user #
# #
##############################################################
if stat == "show":
natoms = skipcounter + keepcounter
print("\nTotal number of atoms = " + str(natoms))
print("Atoms skipped = " + str(skipcounter))
if keepcounter - cutoff_counter > 0:
print("Atoms counted = " + str(keepcounter - cutoff_counter) + " (see PyMOL object \"" + objectname + "\")")
else:
print("Atoms counted = " + str(keepcounter - cutoff_counter) + " (Empty CGO object not loaded)")
print("Atoms cutoff = " + str(cutoff_counter)) # Note that cutoff occurs AFTER skipping!
if keepcounter - cutoff_counter > 0:
cmd.delete(objectname)
cmd.load_cgo(arrow, objectname) # Ray tracing an empty object will cause a segmentation fault. No arrows = Do not display in PyMOL!!!
cmd.show(representation="cartoon", selection=first_obj_frame)
if (first_obj_frame != last_obj_frame):
cmd.show(representation="cartoon", selection=last_obj_frame)
cmd.hide(representation="cartoon", selection=last_obj_frame)
cmd.bg_color(color="white")
cmd.set_view(save_view)
return
cmd.extend("modevectors", modevectors)