-
Notifications
You must be signed in to change notification settings - Fork 10
/
slides.html
236 lines (167 loc) · 5.34 KB
/
slides.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
<!DOCTYPE html>
<html>
<head>
<title>Bagging</title>
<meta charset="utf-8">
<link rel="stylesheet" href="https://unpkg.com/purecss@1.0.1/build/pure-min.css" integrity="sha384-oAOxQR6DkCoMliIh8yFnu25d7Eq/PHS21PClpwjOTeU2jRSq11vu66rf90/cZr47" crossorigin="anonymous"> <style>
@import url(https://fonts.googleapis.com/css?family=Yanone+Kaffeesatz);
@import url(https://fonts.googleapis.com/css?family=Droid+Serif:400,700,400italic);
@import url(https://fonts.googleapis.com/css?family=Ubuntu+Mono:400,700,400italic);
body { font-family: 'Droid Serif'; }
h1, h2, h3 {
font-family: 'Yanone Kaffeesatz';
font-weight: normal;
}
.remark-code, .remark-inline-code { font-family: 'Ubuntu Mono'; }
.reference{
font-size: 10px;
}
.smaller-font { font-size:14px }
@page {
size: 908px 681px;
margin: 0;
}
@media print {
.remark-slide-scaler {
width: 100% !important;
height: 100% !important;
transform: scale(1) !important;
top: 0 !important;
left: 0 !important;
}
}
.figure img{
height: 550px;
}
.figure-200 img{
height: 200px;
}
.figure-250 img{
height: 250px;
}
.figure-300 img{
height: 300px;
}
.figure-500 img{
height: 500px;
}
.figure-w500 img{
width: 500px;
}
.figure-w600 img{
width: 600px;
}
</style>
</head>
<body>
<textarea id="source">
class: center, middle
# Bagging
CS534 - Machine Learning
Yubin Park, PhD
---
class: middle, center
Recall the bias-variance decomposition
for Squared Loss
$$ \text{E}[(y-f)^2] = \text{Bias}[f]^2 + \text{Var}[f] + \sigma^2 $$
---
class: middle, center
This time, we will decompose a bit differently:
$$ \text{E}[(y-f)^2] = \text{E}[((y - \text{E}[f]) + (\text{E}[f] - f))^2]$$
$$ = \text{E}[(y - \text{E}[f])^2] + \text{E}[(\text{E}[f] - f)^2]$$
$$ \ge \text{E}[(y - \text{E}[f])^2] $$
---
class: middle, center
Maybe too obvious.
If we can make `\(f\)` close to `\(\text{E}[f]\)`
the expected loss will be less.
But, how?
---
## Bagging (1)
Imagine that we know the "real" distribution for the samples: `\((\mathbf{x}_i, y_i)\)`
To estimate `\(\text{E}[f]\)`, we would repeat:
1. draw a set of samples
1. estimate `\(f\)`
1. repeat the above as many as possible
1. then aggregate all estimated `\(f\)`
The only caveat is that we do not know the "real" distribution.
Perhaps, we can "simulate" the real distribution with the samples we have?
BTW, What's the difference between 1) sampling from the distribution and 2) sampling from the samples?
---
## Bagging (2)
Bagging (Bootstrap Aggregation) works as follows:
1. draw random samples from the data with "replacement"
1. estimate `\(f\)`
1. repeat `\(B\)` number of times
then get the final model by averaging as follows:
$$ f\_\text{bagged} = \frac{1}{B} \sum\_{b=1}^B f_b$$
---
class: middle, center
.figure-500[![bt](img/bagged_trees.png)]
.reference[Chapter 8 of [ESLII](https://web.stanford.edu/~hastie/ElemStatLearn/)]
---
class: middle, center
.figure-500[![bt](img/bagged_tree_perf.png)]
.reference[Chapter 8 of [ESLII](https://web.stanford.edu/~hastie/ElemStatLearn/)]
---
## Model Averaging and Stacking
One step beyond the simple averaging models:
$$ \text{E}[(y - \sum\_{b=1}^B w\_b f\_b)^2] \le \text{E}[(y - \frac{1}{B} \sum\_{b=1}^B f_b)^2] $$
If `\(w_b = \frac{1}{B}\)`, then the both sides are equal.
How do we estimate the weights, `\(w_b\)`?
We will divide the training set into two parts:
- **Training I** for fitting `\(f\_b\)`
- **Training II** for estimating `\(w_b\)`
This can be viewed as stacking two layers of models, thus Model Stacking.
---
class: center, middle
## Questions?
</textarea>
<script src="https://remarkjs.com/downloads/remark-latest.min.js">
</script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js?config=TeX-AMS_HTML&delayStartupUntil=configured" type="text/javascript">
</script>
<script type="text/javascript">
var hljs = remark.highlighter.engine;
/*
Language: terminal console
Author: Josh Bode <joshbode@gmail.com>
*/
hljs.registerLanguage('terminal', function() {
return {
contains: [
{
className: 'string',
begin: '^([\\w.]+)@([\\w.]+)'
},
{
className: 'constant',
begin: ' (.*) \\$ '
},
{
className: 'ansi',
begin: '<span style\\="([^"]+)">',
end: '<\\/span>'
}
]
}
});
var slideshow = remark.create({
highlightStyle: 'monokai'
});
// extract the embedded styling from ansi spans
var highlighted = document.querySelectorAll("code.terminal span.hljs-ansi");
Array.prototype.forEach.call(highlighted, function(next) {
next.insertAdjacentHTML("beforebegin", next.textContent);
next.parentNode.removeChild(next);
});
// Setup MathJax
MathJax.Hub.Config({
tex2jax: {
skipTags: ['script', 'noscript', 'style', 'textarea', 'pre']
}
});
MathJax.Hub.Configured();
</script>
</body>
</html>