-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathslides.html
258 lines (193 loc) · 7.4 KB
/
slides.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
<!DOCTYPE html>
<html>
<head>
<title>RF</title>
<meta charset="utf-8">
<link rel="stylesheet" href="https://unpkg.com/purecss@1.0.1/build/pure-min.css" integrity="sha384-oAOxQR6DkCoMliIh8yFnu25d7Eq/PHS21PClpwjOTeU2jRSq11vu66rf90/cZr47" crossorigin="anonymous"> <style>
@import url(https://fonts.googleapis.com/css?family=Yanone+Kaffeesatz);
@import url(https://fonts.googleapis.com/css?family=Droid+Serif:400,700,400italic);
@import url(https://fonts.googleapis.com/css?family=Ubuntu+Mono:400,700,400italic);
body { font-family: 'Droid Serif'; }
h1, h2, h3 {
font-family: 'Yanone Kaffeesatz';
font-weight: normal;
}
.remark-code, .remark-inline-code { font-family: 'Ubuntu Mono'; }
.reference{
font-size: 10px;
}
.smaller-font { font-size:14px }
@page {
size: 908px 681px;
margin: 0;
}
@media print {
.remark-slide-scaler {
width: 100% !important;
height: 100% !important;
transform: scale(1) !important;
top: 0 !important;
left: 0 !important;
}
}
.green {
color: #45ADA8;
}
.figure img{
height: 550px;
}
.figure-200 img{
height: 200px;
}
.figure-250 img{
height: 250px;
}
.figure-300 img{
height: 300px;
}
.figure-350 img{
height: 350px;
}
.figure-w500 img{
width: 500px;
}
.figure-w600 img{
width: 600px;
}
</style>
</head>
<body>
<textarea id="source">
class: center, middle
# Random Forests
CS534 - Machine Learning
Yubin Park, PhD
---
class: center, middle
"If you can't beat 'em, join 'em."
To fight with the variance (or randomness),
we will adopt randomness to the limit.
---
class: middle
## Basic Decision Tree
- Start with a dataset: `\(\mathcal{D} = \{(\mathbf{x}_1, y_1), (\mathbf{x}_2, y_2), \cdots, (\mathbf{x}_n, y_n)\}\)`
- Grow a Decision Tree:
1. Iterate over all possible splittig pairs: splitting variable and value
1. Select the best splitting pair
1. Split the data into two partitions based on the selected splitting pair
1. Repeat the process till any stopping criterion is met
---
class: middle
## Bagged Trees
- Start with a dataset: `\(\mathcal{D} = \{(\mathbf{x}_1, y_1), (\mathbf{x}_2, y_2), \cdots, (\mathbf{x}_n, y_n)\}\)`
- .green[**Boostrap datasets:**] `\(\mathcal{D}_1, \mathcal{D}_2, \cdots, \mathcal{D}_B\)`
- Grow a Decision Tree .green[**for each bootstrapped dataset:**]
1. Iterate over all possible splittig pairs: splitting variable and value
1. Select the best splitting pair
1. Split the data into two partitions based on the selected splitting pair
1. Repeat the process till any stopping criterion is met
- .green[**Combine the trained decision trees**]
.reference[[Leo Breiman. Bagging Predictors, Machine Learning (1996)](https://www.stat.berkeley.edu/~breiman/bagging.pdf)]
---
class: middle
## Random Subspace
- Start with a dataset: `\(\mathcal{D} = \{(\mathbf{x}_1, y_1), (\mathbf{x}_2, y_2), \cdots, (\mathbf{x}_n, y_n)\}\)`
- Grow .green[**multiple**] Decision Tree using .green[**the same training data**]
1. .green[**Bootstrap features at each node**]
1. Iterate over all possible splittig pairs .green[**within the bootstrapped features**]
1. Select the best splitting pair
1. Split the data into two partitions based on the selected splitting pair
1. Repeat the process till any stopping criterion is met
- .green[**Combine the trained decision trees**]
.reference[[Tin Kam Ho. The Random Subspace Method for
Constructing Decision Forests, IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE (1998)](https://pdfs.semanticscholar.org/b41d/0fa5fdaadd47fc882d3db04277d03fb21832.pdf)]
---
class: middle
## Random Forests
- Start with a dataset: `\(\mathcal{D} = \{(\mathbf{x}_1, y_1), (\mathbf{x}_2, y_2), \cdots, (\mathbf{x}_n, y_n)\}\)`
- .green[**Boostrap datasets:**] `\(\mathcal{D}_1, \mathcal{D}_2, \cdots, \mathcal{D}_B\)`
- Grow a Decision Tree .green[**for each bootstrapped dataset:**]
1. .green[**Bootstrap features at each node**]
1. Iterate over all possible splittig pairs .green[**within the bootstrapped features**]
1. Select the best splitting pair
1. Split the data into two partitions based on the selected splitting pair
1. Repeat the process till any stopping criterion is met
- .green[**Combine the trained decision trees**]
.reference[[Leo Breiman. Random Forests, Machine Learning (2001)](https://www.stat.berkeley.edu/~breiman/randomforest2001.pdf)]
---
class: middle
## Extra-Trees
- Start with a dataset: `\(\mathcal{D} = \{(\mathbf{x}_1, y_1), (\mathbf{x}_2, y_2), \cdots, (\mathbf{x}_n, y_n)\}\)`
- Grow .green[**multiple**] Decision Tree using .green[**the same training data**]
1. .green[**Bootstrap features at each node**]
1. .green[**Draw random split values for the bootstraped features**]
1. Iterate over all .green[**the candidate splittig pairs**]
1. Select the best splitting pair
1. Split the data into two partitions based on the selected splitting pair
1. Repeat the process till any stopping criterion is met
- .green[**Combine the trained decision trees**]
.reference[[Pierre Geurts, Damien Ernst, Louis Wehenkel. Extremely randomized trees, Machine Learning (2006)](http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.65.7485&rep=rep1&type=pdf)]
---
class: center, middle
.figure-w600[![rf1](img/rf1.png)]
.reference[Chapter 15 of [ESLII](https://web.stanford.edu/~hastie/ElemStatLearn/)]
---
class: center, middle
.figure-w600[![rf1](img/rf2.png)]
.reference[Chapter 15 of [ESLII](https://web.stanford.edu/~hastie/ElemStatLearn/)]
---
class: center, middle
.figure-w600[![rf1](img/rf3.png)]
.reference[Chapter 15 of [ESLII](https://web.stanford.edu/~hastie/ElemStatLearn/)]
---
class: center, middle
## Questions?
</textarea>
<script src="https://remarkjs.com/downloads/remark-latest.min.js">
</script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js?config=TeX-AMS_HTML&delayStartupUntil=configured" type="text/javascript">
</script>
<script type="text/javascript">
var hljs = remark.highlighter.engine;
/*
Language: terminal console
Author: Josh Bode <joshbode@gmail.com>
*/
hljs.registerLanguage('terminal', function() {
return {
contains: [
{
className: 'string',
begin: '^([\\w.]+)@([\\w.]+)'
},
{
className: 'constant',
begin: ' (.*) \\$ '
},
{
className: 'ansi',
begin: '<span style\\="([^"]+)">',
end: '<\\/span>'
}
]
}
});
var slideshow = remark.create({
highlightStyle: 'monokai'
});
// extract the embedded styling from ansi spans
var highlighted = document.querySelectorAll("code.terminal span.hljs-ansi");
Array.prototype.forEach.call(highlighted, function(next) {
next.insertAdjacentHTML("beforebegin", next.textContent);
next.parentNode.removeChild(next);
});
// Setup MathJax
MathJax.Hub.Config({
tex2jax: {
skipTags: ['script', 'noscript', 'style', 'textarea', 'pre']
}
});
MathJax.Hub.Configured();
</script>
</body>
</html>